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1. INTRODUCTION

The goal of the studies reported here has been the develop-
ment of an analytical procedure for predicting the mechanical
and acoustic excitation environment of a shroud-enclosed space-
craft. An estimation procedure known as statistical energy
analysis 1is described. This estimation procedure is applicable
to prediction of the vibration environment of any spacecraft-
shroud assembly. To 1llustrate the procedure, we have focused
our attention on prediction of the vibraticn environment for
a class of spacecraft-shroud assemblies that are similar to
the 0GO spacecraft assembly. The basic spacecraft structure
for this class of assemblies 1s an array of panels that are
supported by a series of trusses. The trusses are connected
to a ring frame that is, in turn, connected to the shroud. The
predictions in this report give spectral acceleration levels
on the spacecraft panels in terms of the gross structural pro-
perties of the assembly. Fine details of the assembly, such as
the exact details of the shroud/ring-frame/mounting-truss
connection, are not needed for the predictions. As a further
example of the predictions, numerical results are obtained for
a model of the 0GO spacecraft. These results show that, for
this particular assembly, the dominant excitation of the space-
craft is by energy transmitted from the exterior sound field
through the interior acoustic space; the excitation by energy
transmitted along the mounting trusses is of lesser signifil-
cance. With certain reservations, we can regard this result
as fairly general for the class of spacecraft assemblies con-
sidered here.

The maJor limitation of the prediction method is that it is
applicable only at high frequencies in which many modes of each



structure are resonant in each octave band. For the 0GO assembly
and other assemblies of similar size, the lower-frequency limit
of the predictions is approximately 200 Hz. Another limitation
of the prediction method is that 1t requires knowledge of the
damring properties of the structural and acoustic elements in

the assembly. In thils report, we do not present an analytical
method for predicting the damping of the structures. Rather, we
have used empirical relationships of which we are reasonably
confident. We expect that the dissipation-loss factors predicted
by these empirical relatlionships will be within a factor of 5

of the true dissipation-loss factor for the structure.

Our model of the spacecraft-assembly is briefly described in
the following sections of this chapfer. In addition, we gilve
brief descriptions of the environment considered in the analysis
and the prediction scheme itself. In Chapter II, the prediction
scheme is discussed in greater detall. The power-balance
equations that are used 1in the analysis are derived from a basic
result for two coupled oscillations. In Chapter III, we predict
the environment due to energy transmitted by the acoustic space.
Similarly, in Chapter IV, we predict the environment due to
energy transmitted by the mounting trusses. The organization of
Chapter III parallels that of Chapter IV. First, the model 1s
described. Then, using the results of Chapter II, power-balance
equations for the model are obtained. Next, the necessary
parameters are derived in terms of the basilc structural pro-
perties of the system. The spectral response of each element in
the assembly i1s obtained in terms of their structural and
acoustic properties. Finally, numerical results are obtailned
for a model of the OGO spacecraft.




In Chapter V, the predictions of the previous two chapters
are combined. This gives the over-all spacecraft-panel
environment due to acoustically and structurally transmitted
energy. In Chapter VI, we discuss the conclusions that can be
obtained from this study. Appendix A of this report describes
an experimental study that could be conducted to complement
the analytical prediction. A list of parameters that are
appropriate for the OGO assembly are given in Table I.

1.1 Description of a Model that Retains the Vibrational
Response and Transmission Properties
of the 0GO Spacecraft-Shroud Assembly

The estimation procedures described in this report could
be used for any spacecraft-shroud assembly. To help fix our
ideas, however, we will make reference to the structure shown
in Fig. 1. This structure is an idealized model of the OGO
spacecraft-shroud assembly. In this model, the shroud is a rib-
gstiffened cylindrical shell. The base of the shroud attaches
to a mounting ring frame which provides the principal support
for the spacecraft. The spacecraft proper is attached tc the
ring frame by a series of mounting trusses. The actual OGO
spacecraft is a complicated aggregation of solar panels,
antennas, center-of-gravity control rods, Jjets, instruments,
etc. We have simplified it to be simply a rectangular box of

flat panels.

The mechanical descriptors of these major segments will be
put in a form that is as general as possible, to allow for
different kinds of construction. One-dimensicnal structures such



as ribs, ring frames, and trusses are described in terms of lineal
density (mass per unit length), radii of gyration for bending and
torsional motion, radius of curvature, and over-all length.
Panellike structures such as the shroud and the spacecraft box

are described by surface density (mass per unit area), radius of
gyration for bending, and over-all dimensions, including radius

of curvature. The elastic properties of the elements are
described by Young's modulus or by the longitudinal wavespeed.

1.2 Definition of the Environment Considered in the Analysis

The highest pressure load sustalned by the shroud is achieved
during the launch and the maximum q phases of the flight. During
the launch, excitation is due to the sound waves that are
generated by the turbulent exhaust impinging on the shroud from
below. During periods of high dynamic pressure, excltation is
due to convected turbulent pressure fluctuations that arise in
the boundary layer of the flow about the shroud.

In a sound field, there is a distinct relationship between
frequency (f) and wavelength (A) scales that is governed by the
speed of propagation, 1.e.,

A =c, (1)

where . is the speed of sound. In turbulent flow, by
contrast, there is no specific relationship between frequency
and wavelength, and, 1n fact, a particular wavelength of
pressure disturbance may have a complete spectrum of ex-
citation frequencies. The result of this distinction is that a
pressure spectrum measured at the surface of the shroud may
give rise to two completely different mechanical-vibration-




response spectra, depending on whether the pressure field is
due to sound or a turbulent boundary layer. The relative
efficiencies of sound fields and turbulent flow in producing
mechanical excitation has been discussed in Refs. 1 and 2.

If one knows the mechanical power absorbed from the
environment by groups of modes that are similarly coupled to the
interior acoustic field, then the analyses developed in this
report will apply equally well, whether that power is due to
aerodynamic or acoustic excitations. For the purposes of
calculating the power absorbed by each group cf modes, however,
we shall assume that the exterior field is a reverberent sound
field. This means that there is equal probability for acoustic
energy to be incident from all angles. As we shall see, this
has a particularly simple interpretation theoretically, and
represents a relatively easy condition to achieve experimentally.
If the signal is filtered into narrow frequency bands, the
spatial crosscorrelation pattern for such a field is isotropic
and has the form shown in Fig. 2, where A is the acoustic wave-
length at the center frequency of the band.3

1.3 A Brief Description of The Prediction Scheme

An examination of Fig. 1 will show that there are two primary
paths along which energy can be transferred to the Spacecraft
structure. One of these is an acoustic path through the interior
volume of the shroud and by acoustic transduction into the space-
craft panels. The second is a mechanical path through the mount-
ing truss and into the base of the spacecraft. Figure 3 shows the
major elements involved in the transmission of energy from the
shroud to the spacecraft. One of the goals of this study is to
assess the relative importance of the acoustic and the mechanical

i



excitation. Thus, we shall treat these paths separately in the
prediction calculations.

In addition to this separation into transmission paths, we
also make a distinction between energy transferred by "resonant"
and "nonresonant" motions. If we consider a specific frequency
band, then, by resonant transmission, we mean energy transferred
by vibrational modes of the connecting system that resonate in
this band. By nonresonant transmission, we mean energy
transferred in that frequency band by the motion of modes of the
connecting system that are resonant outside of that frequency
interval.

The standard calculations of sound transmission by bullding
walls are usually based on a "mass-law' nonresonant behavior of
the walls. This 1s because, in a wall, modes that are well-
coupled to a sound field (thelr wavelength is longer than the
acoustic wavelength) are excited by a sound wave at frequenciles
above their natural resonances. Therefore, they respond in a
mass-controlled nonresonant fashion. The collective motion of
such modes gives a falrly large amount of sound transmission,
even though the amplitudes of the wall motion may be quite small.
In contrast, although there can be considerable wall motion due
to modes that resonate in the test frequency band, the con-
tribution of these modes to the sound transmission is small,
since they are usually inefficient sound radiators.

In space vehicles where the structures are lightwelght and
flexurally stiff and there 1s a small distance between support-
ing frames and stringers, the amount of acoustic energy trans-
mitted by the resonant motions is increased in comparison with
the amount transmitted by nonresonant motion. Energy trans-




mission in such systems is, therefore, a competition between
resonant modes that respond with large amplitudes but are
ilnefficient in transferring acoustic energy and nonresonant
modes that have small response amplitude but are efficient
acoustic-energy-transfer agents. The analysis developed in

this report considers both types of energy transfer and attempts
to assess the relative role of each.

The basic approach that we use to develop the prediction
methods is that of statistical energy analysisA. This
approach, which is outlined in the following chapter, treats a
complex system as a set of modes that are coupled together more
or less Intimately, depending on the structural configuration.
The motion of each section or element of the structure is
determined by the energy of the modes that describe its motion.
In this sense, the response of acoustical and mechanical
elements is described by precisely the same type of variable.

A basic result of statistical energy analysis allows us to
predict power transfer between sets of modes that are excited
to unequal energies in the same frequency band. Using the laws
of energy transfer, it is then possible to build up a fairly
simple prediction of the average energy distribution in a complex
system. If more information than the expected mean value of
vibration is desired, then it is possible to build up estimates
of variance and construct confidence coefficients for "estimation
intervals." Unfortunately, however, variance calculations become
very complex for transmission problems, and it will not be
feasible to develop them for the present application.
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2. AN OUTLINE OF STATISTICAL ENERGY ANALYSIS

In this chapter, we discuss the main ideas or concepts of
the statistical energy analysis of vibration response and trans-
mission. A complete recapitulation of all the theoretical de-
velopments and applications that have been made of this type
of analysis is not possible or desirable in this report. The
reader is referred to Ref. 4 for a more complete discussion. It
is possible, nevertheless, to outline the main results in such
a way as to give an appreclation of the role that various com-
ponents play in the calculations, and the way in which the pre-
sent application is related to other applications in the
literature.

2.1 A Fundamental Observation on Power Flow
Between Two Oscillators Excited by Wide-Band Noise

Statistical energy analysis is useful because of a funda-
mental observation on the energetics of two coupled linear
oscillators excited by wide-band¥* random-noise sources. If one
calculates the time-average power flow between these two
oscillators, one finds that it is proportional to the difference
in their time-average total energies~, and that the power flow
is always from the oscillator of higher energy to that of lower
energy. This result was first established by Lyon and Maidanik,
for the case of oscillators with small linear coupling and
damping. Recently, Scharton' has shown that this result is
independent of the strength of the coupling between oscillators
if their energles are suitably defined.

¥By wide-band noise, we mean noise with a spectrum that en-
compasses the resonance frequencies of both oscillators.




For example, let us consider the pair of stiffness coupled
oscillators shown in Fig. 4. The time-average total energy of

oscillator A is defined as
_ 1 1 2
ey =5 My <v > + 5 (K +K) K> (2)
and the time-average total energy of oscillator B 1s
-1 2 1 2
g = 5 Mg <vp™>y + 3 (Ky + K ) Xp> . (3)

The referenced analyses predict that the time-average net power
flow DAB is given by

HAB = ¢AB(8A - SB) ) (Ll-)

where the coupling factor ¢AB is given in terms of parameters of
the two oscillators and is independent of the source strengths:

2 A 2 N\ 2 A\ Ay
K, wp “wp” (@yn pHepny)
¢pn = (5)
a5 K @ 2 w 2)2+(w +a ) (@, 2 0 2 )
pKg (¢y -¢p AN TegNg) (€PN tee®y Mg
where
o _ KK, o KKy
w = , @ =
AT B
A My

10




and

We note from Eq. (5) that the coupling factor ¢pp 1s positive
definite, so that the power HAB always flows from the oscillator
of higher average energy to the oscillator of lower average
energy. We note also that the coupling factor has a maximum
value when the resonance frequencies [defined in Eq. (5)] of

the two oscillators coincide. Let us now suppose that oscillator
A 1s excited by an external wide-band noise source but that
osclllator B is excited only through its connection to oscillator
A, In this event, the dissipated power in oscillator B must
equal the power that flows to it from oscillator A. The power
dissipated by oscillator B is given by

Iy = @gNpp : (6)

Equating relations (4) and (6) results, then, in an expression
for the time-average total energy ratio of the two oscillators,

g $
B AB : (7)

p %mat %pNB

This particular result is appropriate only for the case
where two oscillators are coupled together, In the following
sections of this chapter, we will consider power balance
equations for more-complex multimodal systems.

11




2.2 Power Flow in Multimodal Systems Excited by Wide-Band Noise

Armed with our fundamental result on the time-average power
flow between two coupled oscillators excited by wide-band noise,
let us now consider the system diagrammed in Fig. 5. This system
is divided into two subsystems, each of which has several modes
of oscillation and is excited by wide-band noise sources. The
attachments between the subsystems correspond to the coupling
spring Kc in Fig. 4, and result in a power flow between the modes
of vibration of subsystem n and subsystem n+l.

The modes of each subsystem can be treated as a set of
coupled oscillators. Based on the results when only two
oscillators are coupled together, we hypothesize that the power
flow between any two of the coupled oscillators in subsystem n
and n+l 1s proportional to the difference in their time-average
total energies. Then, the power transferred from subsystem n

to subsystem n+l can be given as
nn:n+1 = Z z ¢AB(8A—8B) F} (8)
A B

where summation over A refers to a summation over all modes in
subsystem n, summation over B refers to a summation over all
modes in subsystem n+l, and ¢AB is the coupling factor between
mode A and mode B.

We will assume that the subsystems are so chosen that one
of the following conditions holds:

a. the coupling factors between modes are all
equal,
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b. modes within the same subsystem have the

same time-average total energy,

c. the time-average total energy of a mode
is independent of its coupling to any
particular mode in the other subsystem.

In a practical application of statistical energy analysis,
the above conditions are usually not satisfied exactly. However,
in most cases, the modes of a system can be divided such that
all of the above conditions are approximately satisfied. The
need for and significance of the assumption that one of the
above conditions hold is discussed further in Ref. 4,

If one of the above conditions is wvalid, then the mode-to-
mode coupling factors in Eq. (8) can be replaced by an average
coupling factor between a mode in n and a mode in n+l. The
indicated summation can now be carried out to give

- [En En+1 ] ( )
I = ¢ N N | = w— ? 9
n,nt+l n,nt+l n+l n Nh Nn+l
where @ is the average mode-to-mode coupling factor be-

n,n+l
tween thé two subsystems, En is the total time-average

energy of a subsystem n, and Nn is the number of modes in
subsystem n.
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Up to this point, we have restricted our discussion to
systems excited by wide-band noise. In the calculations to
follow, however, we wish to find the vibrational response of the
structural elements in bands of frequency. Toward this end, we
will consider, in the next section, power flow in a multimodal
system excited by a band of noise. As 1t turns out, the basic
calculations of time-average power flow between two groups of
modes excited by wide-band noise can still be used to advantage.

2.3 Power Flow in Multimodal Systems
Excited by a Band of Noise

Let us consider a multimodal system excited in a band of
frequencies. We can divide the modes of this system into resonant
and nonresonant modes according to whether or not their resonance
frequencies are within the band of excitation. We can further
divide the modes into groups of modes which are similarly coupled
to modes in other groups. The power flow between two groups of
similarly coupled resonant modes can be given by Eq. (9), since
the excitation band encompasses the resonance frequencies of the
modes within these groups. The power-flow interactions with
groups of nonresonant modes, however, cannot be predicted by the
results of the last two sections, since the resonance frequencies
of these modes lie outside the band of excitation.

Power flow between resonant and nonresonant modes 1is
generally not proportional to modal energy difference,
Fortunately, the response and energy transmission of nonresonant
modes can usually be calculated by more-classical vibrational
analyses. For example, the response and energy transmission of
nonresonant modes in a panel excited by an acoustic fileld are
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8
given by the so-called "mass law".  In the formulation to
follow, we assume that the nonresonant response and power-flow
interactions are known.

Let us consider the system diagrammed in Fig. 6. This
system is excited by a band of noise and has accordingly been
divided into groups of resonant modes and groups of nonresonant
modes. We assume that the modes within each group are
similarly coupled to modes in other groups.

If the vibration of this system has reached a time-average
equilibrium level, then in the band of excitation we can
identify an amount of power received by the nth group from the
in

environment, denoted Hn We can also identify the power

diss

dissipated, Hn , the power flow to the other groups of

resonant modes, Hn,n—l and nn,n+l’ and the power flow to the

NR and II NR

n,m-1 n,mtl Since

nonresonant groups of modes, Il

the modes are at equilibrium, a power-balance equation for
the nth group of modes is

in _
r[n - rIn,n+1 + IIn,n—l + 4 n,m-1 (10)

The power dissipated in the frequency band of excitation
by the nth group of resonant modes is classically given in
terms of a dissipation or internal loss factor My

15



;1’1 = CL‘Tln En: (ll)

where @ is the center frequency of the excitation band and En
is the time-average kinetic energy in the nth group. For con-

sistency with the dissipation loss factor when En+1 approaches

zero, we define a coupling loss factor m 1 PY
2

E E
i __n__nj—_l_]’

n,nt+1 = CDT]n,n+1 Nn ['Nn Nn+l

(12)

where Nn is the number of modes in the nth group. Comparison of

this equation with Egq. (9) indicates that the coupling loss

factor is related to the average mode-to-mode coupling factor
by the equation

CDT]n,n+1 = ah,n+l Nn+l : (13)

For a general system, we do not know the exact number
of modes in each resonant group. However, it turns out that we
can arrive at a reasonably good estimate from the modal density.
Modal density is defined as the 1limit, as the bandwidth approaches
zero, of the expected number of modes that occur in a given
frequency band divided by the bandwidth:

n(e) = 1am, MEH) - N(£) (14)
A0 A
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where n(f) is the modal density, N(f) is the average number
of modes with resonance fredquencies below f in an ensemble
of systems, and A 1s the bandwidth. Quantitatively, the
modal density is the number of modes per unit frequency,
although of course that number may be considerably less
than unity. |

For our calculations we will find it convenient to use
the average modal density over a band of frequencies. This
average density is defined as

N(F + 3) - N(f - 2) |
nlr) = T2 A 2, (15)

so that the nﬁmber of modes of the nth group in the frequency
band A is simply

£)A . (16)

The power-balance equation, Eq. (10), can now be ex-
pressed in terms of the loss factors, modal densities, and
time-average total energy of each group of modes, through
Egs. (11), (12), and (16):
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I in En En+1
{ = N A -
n n,n+l n A — A
n n+l
[ En En 1 ]
+ wn n A - -
n,n-1 n =
nnA n, _ 1A
NR NR
+ M En + IIn,m—l + IIn,m.-l—l ? (17)

where A is the bandwidth of the frequency band being considered.
Similar power-balance equations can be obtained for the other

groups of resonant modes.

These, together with Eq. (17), form

a set of linear equations that can be
the resonant modal groups in terms of

environment and the nonresonant modal

solved for the energy of
the power flows from the
groups, the loss factors,

and the modal densities.

We assume that the needed power flows

can be calculated by classical methods.¥ It remains, then, to
These must be either
In this

equally valid

find the loss factors and modal densities.
calculated or estimated on the basis of experiment.
report, we shall use the former approach. However,

experimental methods are described in Appendix A.

*¥ Tn Sections 3.5 and 4.5, this will be found to be a valid
assumption for the problem that we are considering.
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2.4 Calculation of Loss Factors and Modal Densities

In this section, we deal with the procedures for calcu-
lating the coupling loss factors, dissipation loss factors, and
modal densities,

Two different approaches are possible in the calculation
of a coupling loss factor. The first approach can be used
when the "uncoupled systems" are well defined, with calculable
normal modes of vibration. Then one can consider the system
coupling to be a series of mode-by-mode interactions. This
approach reduces the system to modal interactions of the type
shown in Fig. 4. In such a system, it is possible to obtain
the modal-coupling loss factor by direct computation. The
interactions between groups of resonant modes can then be
computed and statistical averages of these interactions can be
performed. Such an approach was the basis for the calculations
in Ref. 9, and it has been used to compute the interaction
between a simple linear oscillator and a vibrating plate in
Ref. 10.

A second approach was suggested by the calculations in
Ref. 10, which showed that the average power flow between
the mass-spring oscillator and a random ensemble of plates was
the same as that between the oscillator and an infinite plate.
The generation of average interactions by the consideration of
infinitely extended systems has also been utilized and was
employed in the calculation of the coupling factors between
beams and plates and between connected plates, in Refs. 10 and
11. The equivalence between the average interaction of finite
systems (where one takes the average by assuming that the
resonant frequencies of the modes are equally probable over some
frequency interval) and the interaction of infinite systems has



been demonstrated in a few particular instances and has a strong
intuitive appeal, but it has not yet been given the solid
analytical foundation that would establish it as a general
theorem, It is, nevertheless, the approach that we shall take
for the calculations in this study.

In using the second approach, we imagine that a mechanical
wave in one of the two connected systems is incident on the
Junction between them. The amount of power that flows to the
second system is computed by imagining that the junction is
severed and establishing and "unloaded" motion of the junction
point. This motion then acts as a source of power transfer
through the "internal impedance" of the exciting system into a
"load impedance" of the second system. For this particular
direction and type of wave incidence on the junction, the power
flow 1is expressible in terms of a ratio of two impedances of the
inclident system. This approach is particularly valuable, since
many of these impedances have been previously calculated and
tabulated.29 One can then average over directions of incidence
of the wave (where this is appropriate) and calculate an average
power flow between the systems. The intensity of the incident
wave establishes the strength of the "reverberant field" in the
exclting system.

The dissipation loss factors cannot be calculated theo-
retically at the present time. However, an empirical estimate
of’ these factors based on a number of past experimental and
field results can be made. In the absence of any experimental
evidence, these estimates can be used, but of course with some
uncertainty.
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It has long been known that one does not need to calculate
the modes of a system in detaill in order to achieve useful
expressions for the modal density at high frequencies. A well-
known theorem by Weyl12 shows that at sufficiently high
frequencies, the modal density of three-dimensional spaces
depends only on the total volume of the space and that the modal
density of two-dimensional spaces depends only on the area.
These asymptotic results have long been used in the theory of
specific heats of crystals and in calculating the modal density
of acoustic spaces. They imply that one can find the modal
density of an irregularly shaped plate by computing the modal
resonance frequencies of a simply supported plate having the
same area. The detailled boundary conditions are important in
establishing the preclse resonance frequencies, but the average
frequency separation of the modes depends only on the total
area of the plate. Similarly, the modal density of truss systems
can be found by computing the modal resonance freguencies and
their distribution in a simply supported beam having the same
total length as the truss system. We shall make use of
specific examples of such calculations in later sections of
this report.

In addition to implying an ease of calculation of modal
density, Weyl's results also suggest that the modal density
of combined systems--e.g., a beam that can carry flexural and
torsional waves simultaneously--can be calculated simply by
adding the modal densities of each component of the system or
of the motion. This is true because, if modal density is
proportional to volume, then the modal density of two volumes
is simply the modal density of the combined volume or,
equivalently, the sum of the modal densities of the component

systems.
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The concept behind the simple asymptotic approach has been
used to calculate the modal density for beams, plates, and
cylindrical shells. In all cases where the experiment has been
able to count effectively the modes of vibration, the simple
asymptotic formulas have been shown to be surprisingly accurate.

2.5 Review of Assumptions Made in Statistical Energy Analysis

Before we proceed with specific calculations of the energy
transmission in the spacecraft-shroud assembly, 1t is perhaps
wise to review some of the assumptions that are to be made in the
analysis.

Most of the assumptions that we mention here are the result
of our selection of statistical energy analysis as a means of
calculation. Other assumptions are made for the convenience of
specific calculations and applications; these, however, are dis-
cussed as they occur.

The first major underlying assumptions that we make are
(a) that the motion of the structural systems is linear, and
(b) that the coupling between the structural elements and with
acoustic fields is also linear. It i1s not anticipated that
significant nonlinear effects will occur at the levels encounter-
ed in the 0G0 system, although sound levels in some of the larger
booster-spacecraft systems are approaching a point where non-
linear effects can be expected.

The basic calculations of statistical energy analysis assume
that the systems are driven by independent random noise sources
with an excitation spectrum uniform at least over the bandwidth
of the individual modes. As a practical matter, this means that
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the excitation acoustic spectrum must be reasonably smooth,
without discontinuities or spikes that occur within the band-
width of a mode. In some special applications, particularly
where the modal density is qQuite high, statistical energy
analysis will provide good estimates of response even when the
excitation is a single frequency (pure tone). We do not,
however, have that condition in the OGO spacecraft-shroud -
assembly and shall not assume that the calculations that

we obtain are in fact applicable to the pure-tone case.

Another major assumption in our analysis is that each
mode of a subsystem in a prescribed frequency band (octave,
one-third octave, or other) has the same coupling to the modes
of the other subsystems or the same modal time-average
energy as the other modes in the subsystem. In cases where
there is a large discrepancy between the coupling or modal
energy between two classes of modes in the same structural
element, one has to form subsystems for each class of modes,
This was done in Ref. 11, for example, when the power trans-
fer by torsional and bending motion of a beam was considered
for each type of motion independently, and the total power
transfer was obtained as the summed effect of these two classes
of modes. The formation of subsystems for two classes of modes
will be necessary for our analysis of the shroud acoustic

transmission.

The calculation that one usually makes wilth statistical
energy analysis 1s the power transfer between a set of modes
of one system and a set of modes of a second system 1n a pre-
scribed frequency interval. It 1s assumed that a useful
statistic of this interaction is the average power flow when
the resonant frequencies of the modes are allowed to vary
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uwniformly over the band. The usefulness of such a calculation
can frequently be assessed by calculating the standard deviation
of the power flow as the resonance frequencies are varied. When
the number of modes in the interacting sets are high, then this
variance is small and the average calculation gives a good
estimate of the power flow at any set of resonance frequency
locations. When the number of modes in each set 1is relatively
low, then the variance can be high and an average estimate 1in
itself may have relatively little utility. The variance calcu-
lation can be useful in this case, however, 1n estimating how
much change one is likely to find in the energy transfer when
slight changes are made in a system and the resonant frequencies
of modes are altered.
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3. ANALYSIS OF THE ACOUSTIC TRANSMISSION PATH

In this chapter, the transmission of vibratory energy
along the acoustic path is formulated in terms of basic
structural and acoustic parameters of the spacecraft-shroud
assembly. Where useful, specific calculations are made, using
parameter values that are appropriate for a model of the 0GO
spacecraft. These values are listed in Table I.

The elements of the acoustic transmission path are indicated
in Fig. 3. A necessary step in our analysis is the replacement
of these elements in the actual spacecraft-shroud assembly by
idealized models. In selecting models, we have been guided by
two basic considerations. First, we have tried to pick models
that are idealized enough to be analyzed, but still retain the
acoustic response and transmission characteristics representative
of the actual spacecraft elements. Second, we have tried to
pick models that can be easily constructed, so that our
theoretical analysis can be checked experimentally. The models

we have selected are described in the following paragraphs.

3.1 Detailed Description of the Acoustic Path Elements

As a model of the exterior acoustic field, element 1 in
Fig. 3, we select a diffuse reverberant field of noise which
can be described by a mean-square sound-pressure spectral
density,l3 Sp(l)(f). The acoustic space containing this field

has a volume V., and contailins air with density po, speed of sound

1

c and zero mean velocity relative to the missile. The volume

O.’
of the acoustic space will cancel out of the calculations and

therefore is arbitrary for our theoretical analysis.
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In an actual flight, we would expect that the noise imping-
ing on the shroud would be more intense at axially grazing and
near-grazing angles of incidence. Franken and Lyon14 have
studied the differences in the coupling between a diffuse noise
field and the Titan missile skin, and between an axially weighted
noise field and the missile skin. Their analysis showed less
than 1 dB difference in the coupling loss factor for the two
cases, except at the first few modes of the skin, where a 5 dB
difference occurred. A similar analysis could be made for our
model of the spacecraft shroud. In such an analysis, the coupling
between each mode of the shroud and the sound field must be
calculated separately.15 Although a detailed analysis of this
type is beyond the scope of this report, we have estimated the
differences between the coupling of the shroud to a diffuse and
a nondiffuse sound field. For most frequencies, the difference
in the coupling loss factors for the two types of field is less
than 1 dB. Near the ring frequency a difference of around 3 dB
occurs. These differences in coupling loss factor, however,
have less than 1 dB effect on the noise transmission through our
model of the shroud. Since the diffuse reverberant field is
easily simulated experimentally in a large room, it is a better
model of the exciting noise field for our purposes than the
axially weighted field.

In analyzing the acoustic response and transmission
characteristics of the shroud, element 2, we model it by a
ring-framed thin-walled cylindrical shell of radius a, and
length zg. The ring frames are separated by distances £2a’

£2b’ 320, etec. The structural properties of the shell wall

are described, sufficiently for our analysis, by a longitudinal
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wavespeed cz(g), a bending radius of gyration¥* K2, and a

(2)

compressional wavespeed is independent cof freguency and that
the radius of gyration is independent of the direction of
bending.

surface density Py We assume for our analysis that the

The wall of the actual shroud may be inhomogeneous. In
this case, the model described will be a valid representation
for frequencies at which the free-bending wavelength is longer
than the spacing between inhomogeneities. The actual shroud
wall may also be nonisotropic. In such a case, two lisotropic
models can be used as limitling cases. The first model has a
bending stiffness equal to the maximum bending stiffness of the
nonisotropic wall, while the second has a stiffness equal to
its minimum bending stiffness. If the maximum and minimum wall
stiffnesses are less than a factor of two apart, the two limit-
ing estimates will not differ greatly.

The structural properties of the ring frames and the
shell end conditions are not critically important to our
analysis. Only the over-all length of the frames must be
known. The ends of the cylindrical shell model are taken to be
closed by baffles that do not transmit acoustic energy and are
structurally isolated from the shell,

* We mean here a bending radius of gyration that does not take
into account the wall curvature, i.e., the bending stiffness
in a flattened section of the shell wall.
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An actual shroud 1s terminated on one end by a conical cap
and on the other end by a structural bulkhead separating the
spacecraft compartment from the interior of the launch vehicle.
The acoustic acceptance and transmission properties of a conical
structure are not completely understood. We assume that they can
be represented sufficlently for our analysis by replacing the
conical structure by a cylindrical extension to the shroud model
wlth an area equal to that of the conical structure.

We further assume for our analysls that no vibratory energy
is exchanged between the launch-vehicle structural members and
the shroud-spacecraft assembly. For a particular case in which
such energy exchange 1s important, the analysis of this report
could be extended.

The Interior of the shroud model i1s taken to be lined with
a lightweight, acoustically absorptive material. The surface
density and bending stiffness of thils material are negligible
as compared with those of the shell wall, so that the shell
vibrational behavior 1s unaffected. We also take the thickness
of the liner to be sufficilently thin so that radiatilve properties
of the shell are not significantly changed. The effect of the
liner on the absorption of the interior space has been included.

The interlior acoustic space, element 3 in Filg. 3, has a very
complicated geometry. It 1s sufficlently defined for our purposes
by the speed of sound in the media Cos the volume density po, the
free volume V3, and an absorption coefficlent a3. The absorption
coefficient a3 accounts for losses 1In the acoustic space and
Into the shroud acoustic liner. It does not account for losses
due to transmission of acoustic energy through the shroud or in
the spacecraft. We assume that the absorption coefficient of the
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interior acoustic space is small enough, @3 < 0.3, that the
interior sound field is reverberant.

The liner in the actual 0GO assembly is a 1/2- to 1-in.-
thick, 3.5 1lb/cu £t microquartz felt thermal blanket that
covers approximately one-half of the surface area of the
shroud. The acoustical properties of this material were not
readlly available for this project. However, we were able to
obtain a small sample of the material and make an approximate
experimental estimate of the absorption coefficient. This
estimation 1s discussed in more detail in Section 3.4.6.

Finally, we model the spacecraft, element 4 of Fig. 3,
by a rectangular open box of four flat panels. The box is
sufficiently defined by its surface area AM’ and the length
of 1ts connected edges LA‘ The panels are defined by a
bending radius of gyration KA, and a surface mass density

o (4,

The previous discussion concerning nonhomogeneous shell
walls and the effect of ring frames and boundary conditions
applies also to the spacecraft panels.

3.2 Divislon of Modes of Each Element into Groups of
Similar Modes

The elements shown in Fig. 3 and described in the previous
sectlion are each lightly coupled to the neighboring elements
and are lightly damped. Thus, to perform a statistical energy
analysls in bands of frequencies, we group the modes within
each element according to their coupling to modes in other
elements and their resonance frequencies. An appropriate
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grouplng for a particular frequency band is shown in Fig. 7. The
modes of the shroud model are separated into four groups. First,
modes that are both resonant within the band and spatially well-
coupled to the acoustic field are grouped together.* Second,
modes that are resonant but not well-coupled to the sound field
are grouped together.** Third, modes that are spatially well-
coupled but not resonant are grouped together. Finally, modes
that are neither well-coupled nor resonant are grouped together.

The modes of the interior acoustic space are grouped into
resonant and nonresonant modes. Finally, the modes of the space-~
craft model are divided into AF and AS modes and nonresonant well-
coupled and poorly coupled modes.

Certain groups of modes can be neglected in our analysis.
Some modes in the cylindrical shell and the spacecraft are neither
well-coupled nor resonant; these can be neglected, since their
response and energy transmission will be negligible compared
with that of the other modes. Nonresonant modes in the interior
space can also be neglected, since their response is small and

*¥ These modes are termed acoustically fast (AF), since thelr
assocliated bending wavespeed is greater than the speed of
sound in the acoustic space.

*¥¥ These modes are termed acoustically slow (AS).
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and they transmit negligible energy to the spacecraft compared
with the resonant modes.¥ 1In addition, we have assumed that
groups of modes in an element are uncoupled with other groups

in the same element.,*¥

The paths of energy flow that we consider are shown in
Fig. 7. DNote that we have neglected the power flow into the
mechanical path. This neglect is valid provided that the
dissipation loss factors of the ring frame and mounting trusses
are not larger than that of the shroud. In the following
Sections, we calculate the response of each element in bands
of frequencies. Energy transmitted by resonant and nonresonant

modes 1is considered separately.

3.3 Formulation of the Power-Balance Equations

The spectral response levels of the elements in the
acoustic path can be found by using the statistical energy
analysis described in Chapter 2. We first set up the power-
balance equations for each group of modes selected in the
previous section. These equations can be solved for the energy
of each modal group in bands of frequencies. Then, to complete

¥ Note that we restrict our analysis to the frequency range in
which resonant interior space modes exist.

*% This may or may not be true. An experimental study is needed
to support the hypothesis. The role of intermodal coupling
in the same structure can be assessed theoretically by an
additional calculation in which the modes are intimately
coupled and equipart their total energy. For the OGO space-
craft assembly, the noise reduction increases approximately
5 dB below the ring frequency; this increase is due to inter-
modal energy sharing.
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the analysis, we relate the space-average mean-square spectral
acceleration or sound pressure response level of each element,

Sa(i)(f) or Sp(l)(f), to these modal group energies.

When modes of the system reach steady-state energy levels,
the net power flow in a band of frequencies into each group of
modes must be zero. For example, a power balance in a band of
frequencles on the acoustically fast (AF) group of shell modes
gives

I I M0t = o, (18)

oar,1 T Yoar,3 t Moar

where Ha b represents net power flow in the frequency band from
3

modal group a to modal group b, and 1,2AF, 2AS, 2NR, 3, 4, and
INR represent the modal groups. Using Egs. (12) and (16), we

can express the terms of Eq. (18), and of other similar equations,
in terms of the modal densities, the loss factors, and the group
time-average total energies. In this way, five linear algebraic
equations are obtalned. By power balance, we obtain for modal
group 2AF

E E E E
awn n 28F L |+ an n, 2AF 3
2AF,1 PoaF | T = 2AF,3 T2AF | = =
oAF M1 2aF 7

W

+ Mppp Eppp = O (19a)
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For modal group 2AS, we obtain

E E E E
— 243 1 — 2AS
Moas,1 "oas {ﬁ- a ] T Mops 3 Boag [ - - =2 }
2AS 1 foas 3
+ Wppg Fopg = 0 (19p)

Similarly, for modal group 3, we obtain

E E E E
— 2AF 3 — oAS 3
Wopp 3 Popr | = - = | T Pops,3 Peas | = T =
fogp '3 Nops 3

E E E E
= LAF 3 — 4AS 3

* Gypr, 3 Phaw [HlL - 5‘-— ]* “Myps,3 "uas [%4— - %“ ]
AF 3 AS 3

- wng E3 + nQNR,3 =0 (19¢)

In Eq. (190) we have included the power flow from nonresonant
shell modes. In future calculations, this power flow will be
set to zero to evaluate the transmission by resonant modes
alone. Then, the power flow to resonant shell modes from the
exterior field will be set to zero to evaluate the transmission
by nonresonant modes alone.
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E E
LAF 3
Myar,3 "uAF [ - "=

] + Wyap Eypp = O (194)
Nyaw 3

For modal group 4AS, we obtain

E E
= 4AS 3
“Myas,3 "uas [ - =

] + @nypg Eypg = 0 . (19€)
Dyas 3

These five linear algebraic equations can be solved for the time-
average total energles of each group, in bands of frequencies

in terms of the time average total energy in group 1, which we
take to be specified, and the modal densities and loss factors
for each group. Solutions for the modal energies of each group
will be presented in Sections 3.6 through 3.8. The loss factors
and modal densities needed to evaluate these expressions are
found in Section 3.4. Finally, the nonresonant response and
transmission is found in Section 3.5.

The space-average mean-square spectral acceleration levels
or sound-pressure levels of each element in the acoustlc path can
be found in terms of the time-average total energies of the modal
groups representing the element. We calculate the resonant and
nonresonant energies separately. The resonant time-average total
energy in each element in a band of frequencles 1is simply the sum
of the time-average total energles of each modal group within the
element, i.e.,

ons T Eopp . (20)
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Slince the time-average kinetic and potential energy of a
lightly damped multimodal system excited by broad-band noise
are equal, the spectral acceleration levels of structural

elements are given as

s, () = —Ci(—i—i—z : (21)

where A 1is the frequency bandwidth being considered. The

spectral sound-pressure levels are given by

s,V () = —op2 . (22)

In summary, the group time-average total energies can be found
from Egs. (19) and then used to calculate the resonant response
of each element in the acoustic path.

In the next two sections, the parameters needed to

evaluate Egs. (19) are found.

3.4 Calculation of the Modal Densities and Loss Factors

In this section, we obtaln expressions for the modal
densities and coupling loss factors needed to analyze resonant
energy flow in the acoustic path. The expressions that are
obtained give averages of these quantities for an ensemble of
structures or acoustic spaces that have the same gross proper-
ties but differ in fine detail. Also, we estimate the dissi-
pation loss factors, since a theoretical calculation is not
possible and experimental evidence 1s not available.
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3.4.1 Acoustic-Space Modal Density

The average modal density of an ensemble of acoustic spaces
of volume V and speed of sound o is given in Refs. 16 and 17.

In our notation, this expression is

2
n(r) = ALY , (23)

o

where n(f) is the ensemble average number of modes per unit
frequency, £ is the frequency in cycles per second, V is the
acoustic-space volume, and o is the speed of sound. It

follows that the average number of modes in a band of frequencies
is given approximately by

Nip pana a = BDA s (2k)

where £ is the center frequency of the band and A is the band-
width. The variance of the number of modes in a frequency band
from the mean value will depend on the magnitude of the mean.

If the mean number of modes is high, the variance throughout the
ensemble will be small. Thus, for sufficiently high frequencies
or wide bandwidths, Eq. (24) will be an accurate estimation of
the number of modes in a frequency band for any gilven acoustic
space of volume V.

3.4.2 Flat Panel Modal Density

In our analysis of the acoustic path, we need the flat-
panel AF and AS modal densities in bands of frequencies. These
densities are particularly easy to find, since, by definition,

36




all modes below the panel critical frequency are acoustically
slow, while all modes above this frequency are acoustically
fast. The panel critical frequency is defined as the frequency
at which the free-vending wavelength in the panel is equal to

the acoustic wavelength:

2
c

1 o)
fC =§7T K s (25)

Ny

where fc is the critical frequency, c, is the acoustic speed

of sound, k£ is the panel-bending radius of gyration, and Cg
is the longitudinal wavespeed in the panel.

The average density of resonant modes in an ensemble of
panels of area A, radius of gyration k, and longitudinal wave-
speed cy is given in reference 17 as

n(r) = EKA% . (26)

Thus, the density of AF and AS modes above the critical

frequency can be given as

np(f) = w5=—
£>f (27a)

and

|
O

nps(f)
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The AF and AS modal density below the critical frequency is

n,(f) =0 ,

AF(

£F<f (27b)

npo(f) = —5— .

The average number of modes 1n a band of frequency for an ensemble
of panels is given by n(f)A. The variance from this average
throughout the ensemble will decrease as the bandwidth increases.
Our analysis 1is restricted to bands in which many modes resonate,
so that the average number of modes will be a valid estimation

for any of the panels within the ensemble.

3.4.3 Cylindrical Shell Modal Density

For analysis of the transmission of resonant acoustic energy
through the shroud, we require the density of AF and AS shell
modes in bands of frequencies. The approach that we follow 1is
similar to that used in Refs. 18 and 19 tc obtain the density of
resonance frequencies in a cylindrical shell. We review the
derivation of this density, and then extend the approach to find
the density of AF modes. The density of AS modes follows as the
difference between the densities of all resonant modes and AF
modes.

The modal densities that will be obtained are average modal

densities over an ensemble of cylindrical shells that differ only
in details, such as boundary conditions.
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Following the approach of Ref. 18, we find an expression
for the resonance frequencies of a thin-walled simply supported
cylindrical shell. This expression is given in Ref. 18 as

i
\)2 — (l—ug) 20 — + 62[02+n2]2
(o%4+n")
_ g2l [ (4-u)n® - 2 -y J (28)
2 1-1 4
where
c
£ _ z
Vo= T fr T 2Ta )
r
h mrwa
B = ——, o =
2AJ3a £ ’

V is a dimensionless resonance frequency, fr is the ring
frequency, ¢, is the longitudinal wavespeed in the shell wall,
a is the shell radius, W 1s Poisson's ratio for the wall
material, m is the axial mode number (m+l equals the number

of nodes in the axial direction), n is the circumferential

mode number (one-half the number of nodes in the circumferential
direction), £ is the length of the shell, and h is the shell-
wall thickness. Eq. (28) is valid if o >> V. Since this con-
dition is violated only for the lowest-order modes in very long
cylinders, it is not Jjudged to be a serious restriction. The
first term of Eq. (28) results from membrane stresses in the
cylinder, the second term results from bending stresses, and



the third term is a correction that accounts for beam motions of
the shell. In future calculations, we neglect this correctlon
term, since it affects only a small number of modes in the com-
plete groups that we consider. Also we neglect p, since it 1s
small as compared with unity.

Tt 1s useful for our calculations to rewrite Eq. (28) in two
forms. First, we can write Eq. (28) in terms of wavenumbers
(with the previously discussed simplifications) as

ko \ g
v2 = (_Zk> + Beak ) (29)
where
2 2 2
k™ = kx + ky s

k 1s the wavenumber magnitude, kx is the circumferential wave-
number, and ky is the axial wavenumber.

Second, we write Eq. (29) in terms of dimensionless varlables
as

Vo = sj_nu'e + I‘4 > (30)

where

4o




and

From Eq. (29) or (30), lines of constant resonance
frequency vV can be plotted In dimensionless wavenumber space as
a function of VB a Ky and B a ky (see Fig. 8). Owing to the
use of dimensionless variables, this plot 1s valid for all thin-
walled cylindrical shells. In Fig. 8, the region in which the
membrane effects--the first term of Eq. (29)--dominate is shown
along with the region in which bending effects--the second term-—-
dominate. The borderline between these two regions is given by
the condition that the first and second terms of Eg. (28) or
(29) are equal.

In a simply supported cylindrical shell, two modes with the
same resonance frequency lie at intersections of lines of
ky = mr/f, where m is an integer, and k:X = n/a, n an integer.
For other boundary conditions, the modes will shift from these
positions by varying extents up to 1/2 unit in m and n. However,
the average number of modes with resonance frequencies below a
particular value of V is given by the average density of modes
in the dimensionless wavenumber space times the area under the
line of constant resonance frequency corresponding to that value
of Vv,

If we assign to each pair of modes the rectangular area in
the dimensionless wavenumber space extending half way to their
nearest neighboring pair, then the density of a mode in



dimensionless wavenumber space is twice¥ the reciprocal of
this area

21

2 —
WB)WB ma/L)  Tap (31)

nWBak, , V¥Baky)=

Thus, the total number of modes with dimensionless resonance
frequencies below VvV is given by

emax(v) 5 '
f r- a6 , (32)
0

o

N(v) = %ﬁa

where N(V) is the average number of modes with resonance fre-
quencies below VY, and emax(v) is the largest € between zero and
7/2 radians for which Eq. (30) can be solved for a real r:

6 ax(V) = arcsinsV , for vV < 1,

max(V) =m1/2 for Vv > 1.

By substituting the value of r° from Eq. (30) into Eq. (32), we
obtain the expression

6 x(¥)
max 1/2
(V) = e f (v2-sin'e) " as. (33)
0

*¥*The factor of two arises because modes occur in pairs.
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Eq. (33) was evaluated numerically. The results are presented
graphlcally in Fig. 9, and can be compared with a more approxi-
mate expression obtained in Ref. 18.20 The most significant
difference between these results is that Eq. (29) is applicable
at and near the ring frequency.

The ensemble average modal density is found from Eq. (33)
by differentiation:

n(V) = “glg‘ k) (34)

where n(v) is the average number of modes per unit V. The
indicated differentiation gives

6
max(v) I -1/2
in 6
a(v) = L [ [1-sme]  w.  (3)
Tap 0 v
This equation agrees with that obtained in Ref. 19.2O Eq. (35)

was evaluated numerically and is presented in Fig. 10.

The density of modes in even a small band of frequencies
must be found by integration of the modal density, because of
the singularity at the ring frequency, vV = 1. For calcula-
tions in this report, we have calculated an average modal
density over third-octave frequency bands. This density 1is
defined as
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N(v,) - N(¥,)

<n(v)>l/3 octave = v v s (36)
2 1

where < >1/3 octave represents an average over 1/3-octave bands,
vV is the band center frequency, and Vs and Vl are the upper and
lower 1limits of the band. The density predicted by Eq. (36) is
plotted in Fig. 10, in dimensionless form.

At frequencies above the ring frequency, Vv > 1, the
cylindrical-shell modal density becomes that of a flat plate with
the same surface area.

An AF mode satisfies the condition that its associated bend-
ing wavespeed 1s greater than the speed of sound,

¢y aF = %o . (37)

For the cylindrical shell, the wavespeed assoclated with a
particular mode can be found in terms of the dimensionless
variables introduced in Eq. (30).

i 1/2
cb=<_l§.=c£~/3§_(sine+r4) : (38)
Thus, the condition for an AF mode 1is
4 4 o
0
ﬁ(sm ot Tar ) >3 (39)
AF £

Il




9 ry .
where PAF and AF are the coordinates of an AF mode in

dimensionless k-space. The solution of Egq. (39) for Tpp

is

D i 1/2
oy 1 %o + 1 o sin'te (40)
—_— EJ
TaR < 2B ¢ 2 452 R 2 AF

b4

n,.n

where ">" applied to the "+" solution and "<" applies to the
"_" sclution. If we define V., as the ratio of the critical

frequency to the ring frequency,

2

_ fc 1 Co
VC :f—-:--é-——2 5 (41)
r CZ

then Eq. (40) can be written as

) 1/2
v v 4 sin™6
2> _C4 ¢ 1____?_14_1*“ (42)
TAR < 2 2 vc

"+" solution of Eq. (42) corresponds to AF modes with

The
resonance frequencies near and above the critical frequency.
These modes would also be acoustically fast in the flat panel.
The "-" solution, however, corresponds to AF modes with
resonance fregquencies near and below the ring frequency. For
thin-walled cylindrical shells, where B<<1, the ring frequency
will lie well below the critical frequency, so that AF modes
occur below the critical frequency. AF modes dec not occur

below the critical frequency in flat panels. Therefore, the
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response, below the critical frequency, of a flat panel can be
significantly less than that of a cylindrical shell of equal

21,22
area.

The region of AF modes near the ring frequency, for
a value of Vc = 8, which is appropriate for the 0GO shroud model,
is indicated in Fig. 8. This region is well within the membrane-
controlled region and indicates that the increased stiffness due
to curvature 1s responsible for the occurrence of AF modes in

this region.

When Vv, 1is large, Eq. (42) takes on a simple form,

and Vo 2> 1

Sinue (43)

We now follow the same procedure as was used to find the density
of resonant modes of the cylindrical shell. The expression
NAF(V) is the average total number of AF modes with resonance
frequencies below V, for an ensemble of cylindrical shells.
NAF(V) is glven by the average density of modes in the dimension-
less wavenumber space times the area of the AF mode region below
the line of constant resonance frequency VY. When Vc >> 1, the

lines of constant rescnance frequency in the AF mode region are
given by

L6




6 = arcsin 'V, (44)

Thus, the number of AF modes with resonance frequencies below
VvV 1s

e

max . 49 0
Nya(V) = %f T R (45)
0

Cc

where emax equals the smaller of arcsina/V and m/2. Eq. (45)
can be evaluated to give

/2

1 3/2
M) = g | 3 s vy - 508 sy
C

if v <1, (46)
and

_ 3k .
NAF(V) = TEa-B—V—C- , 1f v > 1,

A modal density can be obtained by differentiation of

this equation:

O N
np(V) =~y (47)



For the purposes of the analysis in this report, however, it is
more convenient to obtain the average modal density in third-octave
bands, defined by

Nyp(Vq) -Npp(v,)
_ _AF* 1 AF' 2
1/3 octave band s (48)

-V
Yy 2

(v)>

Npp

where vV is the center frequency of the band, and Vl and V2 are
the upper and lower frequency limits of the band. The 1/3-octave
average AF modal density is plotted in dimensionless form in Fig.
11. Expression (49)gives the average number of AF modes for an
ensemble of similar cylindrical shells:

<nAF(V)>1/3 octave Av, (49)

where AV is a third-octave bandwidth in units of dimensionless
frequency. As previously described, if this quantity 1s suf-
ficiently large, it will be an accurate estimate for the number
of modes occurring in a third-octave band for any member of the
ensemble.

The density of AS modes is found as the difference between
the density of all resonant modes and AF modes. The density of
all resonant modes is plotted in Fig. 11 and can be compared with
the AF modal density to obtain the AS modal density.

For future calculations, we need the cylindrical-shell modal
densities as a function of frequency. These are given by
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2ra

>1/3 octave <n(v)>1/3 octave _EZ

<n(f) (50)

We need also the modal densities of shell segments separated

by ribs. Since the modal density of two connected structures

is the sum of the modal densities for each individual structure,
the modal density of a ribbed shell is simply the sum of the
densities of each segment. For our model of the 0GO shroud,
each segment is the same except for axial length. Therefore,
the modal density of the shroud mcdel can be found in terms

of the total length of the shell.

3.4.4 The AF Mode-Acoustic-Space Coupling Loss Factor

For our analysis, we need the coupling loss factors be-
tween an AF mode and an accustic space for both a cylindrical
shell and a flat panel. As discussed in Section 2.4, our
approach 1is to calculate the coupling loss factor between an
AF mode and an infinite acoustic space. We hypothesize that
this coupling loss factor is the average coupling loss factor
between the AF mcde and an ensemble of acoustic spaces with
the same volume but different geometries.

If we restrict our analysis to frequencies at which the
acoustic wavelength is shorter than the structural dimensions,
the coupling loss factor for AF modes in the cylindrical shell
and in the flat panel will be similar. Therefore, we can use
the coupling loss factor between a flat-panel AF mode and an
acoustic space.
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The coupling loss factor can be expressed in terms of the
radiation resistance or the radiation efficiency as

- Rrad ~ poCo

=% PR ) Py 9rad ’ (51)

where Rrad is the radiation resistance and Or is the radiation

ad
efficiency. The radiation resistance of an AF mode in a flat

panel in an infinite baffle has been calculated in Ref. 23 as

5 4 -1/2
k
Rmd=pocoA[1-<E > ] » k< ko, (52)

where ko is the acoustic wavenumber and k is the modal wavenumber.
This expression does not apply at k = ko’ where other effects
cause the radiation resistance to remain finite. From Eq. (52),
we see that all AF modes do not have the same coupling to the
acoustic field. This 1is contrary to our original hypothesis in
setting up the modal groupings. We assume that all AF modes have
a radiation resistance egqual to pOcOA.

Roog = PoC A, (53)

or

rad
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Since only a few modes, whose wavenumbers are very close to the
acoustic wavenumber, do not agree with this approximation, it is
Judged to be valid for our analysis. The average coupling loss

*
factor for the AF modal group 1s given by

; (5L4)

MAF,acoust ~ o Py

In deriving Eq. (54), we have neglected the effect of
structure geometry on the coupling loss factor by assuming
that the acoustic wavelength was shcrter than the dimensions
of the cylinder. For our model of the 0GO shroud, the region
of frequeney where This assumptiocn is valid lies above 200 cps.
Below this frequency, the coupling loss factor will lie somewhat
below that predicted by Eq. (54).

For the flat panel, Eq. (54) is applicable only above
300 cps; below 300 cps, the acoustic wavelength is longer than
the panel dimensions, so that the two sides of the panel become
acoustically short-circuited. We do not encounter this problem,
however, because no AF modes below 500 cps occur in the space-
craft panels.

3.4.5 The AS Mode-Acoustic-Space Coupling Loss Factor

We assume, as in the previcus section, that the acoustic

wavelength is shorter than the cylindrical shell radius;

When the baffle is not infinite and the panel can radiate from
both sides into the acoustic space, the radiation resistance
1s 2pocO A, provided the baffle dimensions are greater than

the acoustic wavelength.
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therefore the coupling loss factor for a flat-panel AS mode in an
infinite baffle can be used with only minor corrections for our
analysis. The radiation properties of a flat, infinitely baffled
panel have been the subject of many papers.l5’23 It has been
found that an AS mode radiates power into the far field from its
edges or corners, or, in general, from any region surrounding a
discontinuity such as a rib or ring frame. It follows that the
baffle at the edge of the panel can have a significant effect on
the radiation by an AS mode. If the edge is unbaffled, the two
sides of the panel are acoustically short-circulted near the edge,
so that negligible power is radiated from this region. Also, if
the panel is baffled so that it radiates into 3/4- or 1/L-space¥’
rather than 1/2-space, the power radiated from the panel edges 1is

reduced or increased proportionately.

The average radiation resistance of an AS mode in an unribbed
infinitely baffled panel in which the panel dimensions are greater
than an acoustic wavelength is given in Ref. 23 as

R = pc PN e (£/f) +p e MM, g (£/T))

[ 1/2 kohys 1/2 kb > 1 ] s (55)

where Pr is the radiating perimeter, %C is the acoustic wavelength

at the critical frequency fc, A is the acoustic wavelength at

0]

the frequency under consideration, k_ is the acoustic wavenumber,

o)
ﬂx and ﬂy are the panel dimensions, and go and g, are functions

* 3/4—sp80e allows radiation from an edge at angles from grazing
to 2707,
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given in Ref., 23. TUsually, the second term of this equation
will be negligible compared to the first. When the panel
dimensions are shorter than an acoustic wavelength, the AS mode

average radiation resistance is given by

Rond = PoCohy (B (B8 /a ) 2/ ) /2

[ 1/2 k A, 1/2 ko by < 1] . (56)

For a ribbed panel we assume that the structural bending-
wave-length is less than the spacing between ribs and that the
vibration fields on the two sides of the ribs are uncorrelated.
Then the panel will radiate from its edges and from both sides
along the ribs. The radiating perimeter is twice the length of
interior ribs plus the length of the baffled panel edges. Un-
baffled panel edges are acoustically short-circuited and there-
fore do not contribute to the radiating perimeter. For the
ribbed panel, [, and ly in Egs. (55) and (56) are the rib
spacings.

Egs. (55) and (56) are valid also for a cylindrical shell
at frequencies above the ring frequency. This is because tThe
curvature effects are unimportant for these frequencies and
the vibrational behavior is that of a flat panel.22

The modes within the AS group have varied radiation
resistances, contrary to our assumption in setting up the
groups. A more detailed division would consider AS-edge and
AS-corner modes separately.24 The errors that result from
using one AS mcde group rather than twe are not great.



3.4.6 Estimation of Dissipation Loss Factors

In spite of recent advances toward an understanding of damp-
ing mechanisms in structures, the dissipation loss factors cannot
be predicted theoretically at this time. Therefore, when possible,
structural dissipation loss factors should be determined by ex-
periments on the spacecraft assembly, so that the theoretical
analysis can be based on an accurate estimation of this parameter.
Appropriate experimental techniques for determining the dissipa-
tion loss factor are described in Appendix A.

Since we do not have experimental results on which to
estimate the dissipation loss factors for the OGO shroud and
spacecraft panels, we must make an empirical estimate of fthis
parameter based on past experimental and field studies of struc-
tures. In our calculations, we estimate the structural dissipa-
tion loss factors to be

2

Tstructure = 10 . (57)

2 will also be used

For certain calculations, a value of 3 x 10~
to show the role that this parameter plays in the response pre-

dictions.

The acoustic-space loss factor is largely controlled by the
liner within the shroud. Therefore, if the acoustic absorption
properties of this liner are known,2 the acoustic-space loss
factor can be estimated with confidence. Liners used in most
spacecraft assemblies are selected for their thermal insulation
properties, so that data concerning their acoustic properties 1is
not readily available., Therefore, for our theoretical study, we
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make an approximate estimate of the expected absorption co-
efficlent for a typical spacecraft assembly:

53 = 0.1 . ' (58)

In some calculations, a value of 33 = 0.3 is used to show the
rcle that interior space absorption plays in determining the
response levels of the spacecraft.

The actual OGO shroud liner is a microquartz felt blanket.
To support the above estimation, we measured the absorpticn
coefficient of This material experimentally for normally
incident scund waves using an impedance tube. The results of
this experiment indicated abscrption coefficients from 0,05,
at low frequencies ( ~400 cps ), to 0.7, at high frequencies
( ~B000 cps ). Since approximately one-half of the shroud
surface is lined, these absorption coefficient values give
average absorption coefficlients of 0,025 to 0.35. The impedance
tube experiment must be looked upon only as an approximate means
to estimate the absorption coefficient in the spacecraft assembly,
since only normally incident sound waves are used and the liner
backing is rigid. A more appropriate method of estimating the

interior space absorption coefficient 1s described in Appendix A,

The dissipation loss factor is related tc the average
abscrpticon coefficient by

CoAQ _ (59)
Na = a ’ 59
3 4wV3 3

Ut
Ut



where A2 is the surface area of the shroud model.

3.5 Formulation of the Response and Transmission by
Nonresonant Modes

The response of a curved or flat flexible panel to a sound
field, when the panel dimensions exceed both the acoustic and
structural wavelengths, may be thought of as composed of two types
of motion. First, the sound pressure will induce a panel motion
that matches the pressure field in both frequency and wavelength.
This response is often referred to as the 'forced-wave" or
"forced" response. When the induced wavelength exceeds the free
flexural wavelength, the modal responses that make up the forced-
wave response are nonresonant and are controlled by the modal
mass.

At the boundaries of the panel, the forced wave alone will
not satisfy the boundary conditions. In order to do so, bending
motions, which are solutions of the homogeneous wave equation,
are generated, and these combine with the forced waves to satisfy
the boundary conditions. These additional motions are commonly
referred to as "free-wave" or "free" response. On a modal basis,
the free response 1s described by resonant modes. We found in the
previous section that the resonant response and transmission are
best handled on a modal basis. For the nonresonant response,
however, it is more convenient to think in terms of forced and
free-wave response.

The forced response, since it does not depend on the
existence of boundaries, will be the same for the infinite panel
as for the finite panel. Our approach is to calculate the forced
response and transmission in terms of the infinite-panel im-
pedances. This approach is well-known in architectural acoustics.
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The pressure on an infinite panel resulting from a sound
wave incident from an angle ¢, measured from the normal, can be
separated into a blocked pressure and a radiation pressure
component. The blocked pressure is that pressure that would
exist on the panel if it were not allowed to move. The
frequency and wavelength of the blocked pressure will be the
frequency and trace wavelength of the incident sound wave. The
pressure amplitude will be twice that of the incident wave
because of the interaction of the incident and reflected
waves.* The radiated pressure will be caused by sound waves
radiated from each side of the panel, owing to its motion. The
frequency and trace wavelength of the radiated sound waves will
be the same as those of the panel vibrations, which in turn are
the same as those of the incident sound wave. It follows that
the radiated sound wave is a plane wave traveling at an angle ¢
from the normal. The radiation pressure opposes the blocked
pressure and acts on both sides of the panel with an amplitude
equal to that of the radiated plane wave. Therefore, the net
pressure difference on the surface of the panel is

i(kosin¢ X - wt)}

p(x,t,¢) = QRG{[Pin - P ] € 5 (60)

c rad

where p(x,t,¢) is the net pressure acting on the panel, x is
a distance along the panel surface, Re signifies "real part

of," P, is the complex pressure amplitude of the incident
inec

¥ If the radius of curvature of a curved panel is not large as
compared with an accustie wavelength, the incident wave is
diffracted by the surface and a description of the blocked
pressure acting on the panel is more complicated (Ref. 25).



plane wave, ¢ 1s the angle of incidence, Prad i1s the complex
pressure amplitude of the radiated plane waves, ko i1s the acoustic
wavelength, and w is the frequency of the excitation. The com-
plex velocity amplitude in the infinite panel is related to the
complex pressure amplitude on 1ts surface by the panel impedance:

2[Pinc - Prad]

= 2
panel Zpanel

v

(61)

where Z is the panel impedance. Similarly, the radiated com-

panel
plex pressure amplitude is related to the complex velocity ampli-

tude in the panel by

Prad = Zrad Vpanel 4 (62)

where Zrad i1s the acoustic radiation impedance.

We can combine the above equations to find either the re-
sponse or the transmission of an infinite panel excited by a plane
wave. The complex response amplitude 1s given by

v 2

anel
p. == = Z + 2 Z ’ (63)
inc panel rad

while the complex transmitted-wave amplitude is given by

Ptrans _ 2 zrad (64
+ 2 Z ) )
rad

ince Zpanel
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Since we are considering the region in which the trace
wavelength of the exciting plane wave exceeds the free-bending-

wave length, the infinite panel impedance is purely reactive:

Zane1 = 0P ; (65)

where Py is the surface mass density. The radiation impedance
also takes on a simple form, since the panel vibrations match
spatially with a plane sound wave radiated at an angle ¢. The
velocity of the radiated plane wave norinal to the panel must
match the velocity of the panel. Thus, the acoustic radiation
impedance is

C
9]
z s

(O}

O
N
(o)}
[O)
—

A e e =
radliation

ol ©
©

where poco is the acoustic impedance, and ¢ is the angle in
which the wave 1s radiated (also the angle of incidence of the

incoming acoustic plane wave).

Using these impedances, the complex forced response
amplitude to an incident plane wave is

Tpane1 _ °

ine iwpstﬁ 2 poco/co§5 ’ (67)

whlle the complex amplitude of the transmitted wave is

Ul
\O



2poco/cos¢
= lop + 2poco/cos¢

(68)

When the panel excitation is a diffuse field of noise, the
spectral response and the power transmission due to forced wave
motion is found by averaging the mean-square response or power
transmission over all solid angles of the incident wave. The
mean-square response veloclty spectrum is given by¥

T/2
Jf |P1 | sind a¢
% , (69)
S_(f) T/2
p
2 f sin¢ 4o

0

where Sv(f) i1s the mean-square forced response velocity spectrum,
S. (f) is the mean-square sound pressure spectrum in the diffuse
field, and Iv/PinI is the magnitude of the complex amplitude ratio
given by Eq. (67). Equation (69) can be evaluated to give

S _(f) 2p ¢ _ w P
\2 - 2 [ 1 - _LQ_ tan 1 S ) ] (70)
S_(f) e 2 w 2P %o

P ps ps

* The factor of two arises because the sound field exists only
on one side of the panel.
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The second term of this equation is important only for very
light panels. The spectral velocity predicted by Eq. (70)
is referred to as random-incidence mass-law response.

The acoustic power transmitted by a unit area of the

panel, Htrans’ is also found by summing over all directions of
incidence
T/2
I f * iné
trans T Vpanel Ptrans siné a¢ ’ (71)
0
* 3
where Ptrans is the complex conjugate of Ptrans’ while the
acoustic power incident on this panel per unit area, Hinc’
is given by
T/2
II Wf §
inc = 70 ] Pine cos$ sind d¢ . (72)
070 %

The ratio of the power transmitted to the power incident is
referred to as a sound transmission coefficient 7. TFor
diffuse field excitation, the sound transmission coefficient
is found from Egs. (67), (68), (71), and (72):

2 2
Htrans _ 4p °o

T = = 1n <1 + > 3
- wgp 2 Z;—E—‘_‘ (73)

inc.

[6)
=



where T is the random incidence mass-law sound transmission co-
efficient., It 1s also common practice to define a transmission
loss (TL). This parameter is given by

TL = 10 log,, (%) i (74)

The random-incidence mass-law transmission loss predicted by

Eas. (73) and (T4) agrees with that plotted in Fig. 13.7 of
Ref. 8.

Equations (70) and (73) give the response and power trans-
mission of an infinite panel when the wavelength of the exciting
pressure field is much longer than the free-bending-wave length in
the panel. These equations can also be used to predict the forced-
wave response and power transmission of a finite panel, when the
panel dimensions are long in comparison with the exciting pressure
wavelength., The region of application for most panels is the
frequency range above the first few resonances of the panel and
below the critical frequency, at which the acoustic wavelength
is equal to the free-bending-wave length. In the following
sections our applications of the formulas are restricted to this
region of frequency.

3.6 Acoustic Noise Reduction by the Shroud

In Section 3.3, a set of algebraic equations was developed
by power balance on the modal groups in the acoustic path. This
set of equations can be solved for the vibration or sound-pressure
spectrum of each element in the acoustic path, in terms of the
exterior sound-pressure spectrum and the structural and acoustic
properties of the element.
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In the present section, we consider a preliminary step
toward the prediction of the spacecraft vibration spectrum:
namely, the prediction of the noise reduction by the cylindrical-
shell model of the shroud. The noise reduction (NR) is defined
as the difference in sound-pressure levels (expressed in
decibels) outside and inside the shell.

The noise reduction by the shell can be conveniently
studied in three regions of frequency27: low frequencles,
below the first resonant frequencies of the shell and the
interior acoustic space; intermediate frequencies, at
which either the shell or the interior space vibrates
resonantly; and high frequencies, at which both elements
vibrate resonantly. We restrict our attention in this report

to high frequencies,

In the calculations that follow, noise transmitted by
resonant and nonresonant shell motions are considered
separately. The over-all noise transmission will be a super-
position of the two contributions.

In Section 3.6.3, the noise reduction by the 0GO shroud

model is calculated as an example illustrative of the more-
general predictions developed in Sections 3.6.1 and 3.6.2.

3.6.1 Noise Reduction by Resonant Motion of the Shroud

The noise reduction by resonant motion in the cylindrical-
shell model of the shroud can be found from the power-balance
equations, Egs. (19), with the power flow from nonresonant

modes, I equal to zero. As a preliminary step, however,

2NR, 3’
we note that the coupling loss factor between cylindrical-shell

63



modes and the exterior sound field 1is approximately equal to that
between shell modes and the interior field., The only difference
is due to the baffling at the ends of the shell. The AS modes
radiate from the ends of the cylindrical shell into 3/4-space for
the external fleld and 1/4-space for the internal field. Because
of the shell ribs, however, the radiating perimeter is much longer
than the edges at the ends of the cylinder. Therefore, the
difference in baffling will produce only a small difference in

the over-all AS mode coupling loss factor to the interior and
exterior spaces.

Assuming that the coupling loss factors between the shell
modes and the two acoustic spaces are equal, we first solve
Egs. (19) for the ratio of exterior to interior acoustic-space
time-average total energies:

B eq. N
E, Mops1 Boas ¥ Mogrl Poar T N3 0 D3
- = ] ) -1 ] (75)
Ey 15 Noasi "eas . Neam1 “oam
2Moas1 + Moas 2Mopp1 T Noaw i
where n3eq' is a composite loss factor accounting for losses in

the acoustic space and in the spacecraft panels, and

"y Vuar Yaars  Puas Nuas uas3 (76)

0 = n, +
3 3 N

3 Tyars ¥ Myar T3 Myasz t Mugs

The mean-square sound-pressure spectra can be expressed in terms
of these group energies through Eq. (22):
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A further step toward prediction of the noise reduction is
taken by relating the modal densities nq and n3 in Eq. (75) to
the volumes V, and V3 through Eq. (23):

n; ¥y
= =T : (78)
i3 Y3

It follows now that the ratio of the exterior to interior sound-
pressure spectra due to noise transmission by resonant shell
modes 1s given by the bracketed expression in Eq. (75).

[ ]
(1) eq.
Sp ()| Maas1 Dpps * loarr Poar * N3 N3 N (79)
s 3)(¢) 1 “n n %
D 2as1 “oas |, Noarl "eaw
2Mopg1 * Moas  “Moart T opw
The noise reduction follows, by definition, as
xrlres) Sb(l)(f)
= 10 loglo m P (80)
D



where NR(reS)

The parameters needed to evaluate thls noise reduction have been
calculated or estimated in Section 3.4. It was found in that
section that the modal density of AF shell modes is zero for

indicates noise reduction by resonant shell modes,

frequencles between the ring frequency and the critical frequency.
Therefore, the noise reduction can be simplified in this frequency
range:

) eq.
Ui Ul n n
nr(Tes) ~ 10 log, {1 + 288 [2 + —2A8 ][n 3 3 ] }-,
N2as,1 Noas, 1M 248 Moas,1

SO G S (81)

Similarly, above the critical frequency, no AS modes occur, so

(res)

that NR can be written as

eqo
y n n, 0
wr(Tes) _ 1o log, {} + ——cAF [2 4 —2AF ][n 3 3 ] } ,
Noar,1 Nopw, 14 08F Moar,1

£>f, . (82)

For frequencies below the ring frequency, Eq. (79) cannot
generally be simplified. However, we can make an approximation
that is appropriate for most spacecraft assemblies. We assume
that the AF modes below the ring frequency dominate the acoustic
acceptance and radiation properties of the shell, i.e., that

Ropr Mopaw,1 22 Poas Noas,1.




With this assumption, the noise reduction becomes approximately

eq.
n g n, Mg
oaw,1 Nopr, 14 2ar Togr, 1

foin < T < fpo (€3)

where fmin is the lowest band center frequency for which a

sufficient number of AF modes occur in the test band to make
the ensemble average loss factors and modal densities accurate
estimates for each member of the ensemble.

The above equations can be used to calculate the noise
reduction by resonant modes in the OGO shroud model. First,
however, we continue our general formulation by predicting the
noise reduction by nonresonant motion of the shell,.

3.6.2 Noise Reduction by Nonresonant Modes in the Shroud Model

The ncise reduction by nonresonant modes can also be found
from the power-balance equations, Egs. (19), and the results
of Section 3.5. Since we have ccnsidered noise transmission by
resonant modes separately, we set the power input to the
resonant modes from the exterior acoustic space equal to zero.
This is done by setting E; equal to zero in Egs. (19a) and
(19p). 1In addition, we restrict our consideration to fre-
quencies between the ring frequency and the critical fre-
quency, since it is only in this region that the standard mass-
law prediction of the ncise transmission is valid. Since we
restrict our analysis to this frequency range, we can set the
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density of AF modes equal to zero in the power balance equations.

3:

n n T
_ 2AS 2AS1 2AS eq. |..
onR,3 = [ ny 2A81 <’2”2A31 T Nopg > + N3 ]¢E3 > (84)

Equations (19) can now be solved for the total energy E

where n3eq. is given by Eq. (76) and n2A83 is assumed to be equal

to Nypqy- Equation (84) expresses a power balance between net

power into the interior space modes from the nonresonant modes and
net power lost by AS mode dissipation resulting from radiation to
the exterior space and dissipation into the interior space and the
spacecraft panels.

The net power transmitted to the interior acoustic space by
nonresonant modes, HQNR 3 can be expressed in terms of the sound
2

transmission coefficient T, given by Eq. (73):

Towg,3 = T e ; (85)

where Hi is the net acoustic power incident on the shroud and

ne
is given by

A
Hinc = Eﬁg%_ [ Sp(l)(f) _ Sp(3)(f) ] . (86)

The group time-average total energy E3 can be expressed 1in
terms of the spectral sound pressure by Eq. (22):
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s (3)(g) = 2o B, (22)

p
V3 A

Finally, Eq. (84) can be solved for the ratio of external to
internal sound-pressure spectra and the resultant noise re-
duction by nonresonant modes:

(nonres) haVy g Noas1tM2as eq.
NR = 10 logq, 1+ — Mopsy \3 +ﬂ N3 .
Th.c bt n Noas1™2as
270 3
(87)
For most spacecraft assemblies, the bracketed term [ ]
can be adequately approximated by n,. In this case, the
noise reduction can be expressed approximately by
Lawv, 7
yr(nonres) _ g5 15, iy 3 —5} . (88)
10 Ac T

For the sake of convenience in future sections, we express
the nonresonant noise reduction in terms of an absorption co-
efficient Eé. This coefficient is related to the loss factor
Ny by Eq. (59) so that Eq. (88) can be written as

(nonres) &é
NR = 10 logyy 11 + —= . (89)



3.6.3 Noise Reduction by a Model of the OGO Shroud

In this section, we calculate the noise reduction by a model
of the 0G0 shroud. These calculations serve as an illustrative
example of the general formulation of noise reduction by a space-
craft shroud.

An appropriate model of the 0GO is shown in Fig. 1 and 1is
described in greater detail in Section 3.1. Parameter values
describing this model are given in Table I. The dissipation loss
factors of the actual structural elements in the 0GO assembly are
not known. Furthermore, they cannot be estimated with confidenceé
theoretically. Thus, we were forced to make a rough estimate of
these loss factors based on past experimental studies of similar
structures. Because of the uncertainty in these estimates, the
predicted noise reduction for the OGO shroud may not agree with
that found experimentally. Support of the theoretical predictions
in this report must come from experimental studies in which both
the noise reduction and the dissipation loss factors are found.

Even though the predictions in this section may not be
accurate for the 0G0 shroud, they do show the role that various
parameters play in determining the noise reduction. In this way,
the calculations suggest suitable methods by which the noise re-
duction in the actual shroud can be increased.

The nolse reduction by resonant motion of the shroud is
given in various frequency ranges by Eds. (81-83). The
coupling loss factors and modal densities required to evaluate
these equations are plotted in Figs. 12 and 13. These parameters.
have been obtalned for the 0GO model from the equations developed
in Section 3.4. Equation (83) was obtained by assuming that the
AF modes below the ring frequency control the acceptance and
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transmission by resonant modes of the shroud. Reference to
Figs. 12 and 13 shows that for the 0GO model the factor
Nopr Mopp,3 18 more than & dB above the factor Nopg Moar, 3
Thus, the assumption that the AF modes control the noise

transmission by resonant modes is wvalid.

The noise reduction predicted by Egs. (81-83) for the
OGO shroud model is plotted in Fig. 14. Two values of the
dissipation loss factors ns, Nopps and Noas have been used in
these calculations to show the role of these parameters in
determining the noise reduction. ©Note that between the ring
frequency and the critical frequency a 5 dB increase in either
nQAS or n3 produces a 5 dB increase in noise reduction. As it
turns out, however, the noise transmission in this range of
frequency is controlled by the forced wave or nonresonant motion
of the shell,

Above the critical freguency, a factor of 3 increase¥* in
the interior-space loss factor n3 produces a 5 dB increase in
the noise reduction. A similar increase in Mopp? however,
increases the NR by only 4 dB. This lack of proportionality
can be explained physically. Increasing the dissipation loss
factor of a group of modes acts to reduce the vibration
amplitude of these modes. However, 1f the total losses by the
modal group are dominated by the acoustic radiation losses,
then an increase in the dissipation loss factor will not
significantly reduce the vibration amplitude of the medes,

This is often the case with AF modes, which are strongly ccupled
to the acoustic field. Thus, an increase in Moap does nct pro-
duce a proportionate decrease in modal vibration amplitudes so
that the noise reduction is not increased proportionately.

¥ A factor of 3 increase correspends to a 5 dB lncrease,.



The lack of proportionality between increases in shell modal
loss factor and nolse reduction is more significantly shown below
the ring frequency. Here, a factor of 3 increase in n2AF increases
the NR by only 1 or 2 dB. Note also that below the ring frequency
a simllar increase in the interior acoustic space loss factor pro-
duces only a 4 dB increase in NR. This comes about because the
net power flow into the interior space increases significantly as
the mcdal energy of the space decreases due to the increased dis-
sipation losses.

It can be said, in general, that the lower the noise re-
duction the more difficult it is to increase it by increasing the
dissipation loss factors of the shell or the interior acoustic
space. But, more importantly, it can generally be said that in-
creases in acoustic space absorption are more effective in in-
creasing the noise reduction by resonant modes than increases in
structural damping.

To gain a more complete understanding of the role that
variocus parameters play in determining the noise reduction by
resonant modes, 1t 1is useful to obtain simple expressions that
give an approximate value for the NR in a particular case. For
example, we can find simplified expressions that give the NR
of the OGO shroud model within 1 or 2 dB of the NR plotted in
Fig. 14. For frequencies between the ring frequency and the
critical frequency, Eq. (81) can be simplified by noting that the
dissipation loss factor Mopas is much larger than the coupling
loss factor nyyg 15 and that n, dominates n3eq. Thus, the NR
is given approximately as

M n n
NR(PeS) =~ 10 loglo [ 2AS g 3 :l » (90)
Mops, 1 Poas
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in the frequency range between the ring frequency, which is
650 Hz, and the critical frequency, which is 5000 Hz,
Equation (87) explicitly shows those parameters that play the
greatest role in determining the noise reduction.

Simplifications can be made also in Eq. (83). For our
model of the OGO shroud, the coupling loss factor HQAF,I is
larger than the loss factor Noppe Again, n3eq
by n3. Thus, the noise reduction can be expressed approxi-

is dominated

mately as

ne(res) L 10 logy, [1 + f% 23 ] , (91)
i2aF1 T2aS

for frequencies bhelow the ring frequency. This equation
indicates that the structural loss factcr of the shell does not
influence the NR below the ring frequency. As shown by the
more exact calculations in Fig. 14, this is not exactly true.
However, 1t represents a reasonable approximation.

To this point we have nct considered the nolse transmitted
by nonresonant modes of the OGO shroud. The ncise reduction
due to nonresonant modes is given by Eq. (86) and Eq., (73).

The parameter values used to evaluate these equations are
listed in Table I. The noise reducticn is calculated for
agssumed values of ag equal to 0.1 and 0.3. The results of
these calculations are plotted in Fig. 14 and can be compared
with the noise reduction due to rescnant modes. Note that

a facter of 3 increase in interior absorpticn increases the
noise reduction 5 dB, while an increase in the shroud dis-
sipation loss factor does not affect the noilse reduction. This



is physically explained by the fact that the nonresonant vibra-
tion amplitude is controlled by the coupling to the acoustic
field and does not depend on the shroud damping.

The total noise reduction is found by superposition of the
noise transmitted by resonant and nonresonant shell modes. Thus,
the total noise reduction is given by the lower of Nr(TeS) ang
NR(nonres) in Fig. 14. The total noise reduction is dominated
by nonresonant modes for frequencles between the ring frequency
and the critical frequency. For other frequencies, our calcula-
tion of NR(MONTeS) 4o not valid., It is clear from Fig. 1k,
however, that the total noise reduction for these frequenciles is
controlled by resonant shroud modes.

In conclusion, we can state as a general result for most
spacecraft shrouds that the noise reduction is controlled by modes
that are well-coupled to the sound field, whether they are
resonant or nonrescnant. It can be further stated that increased
damping of the shroud will be less effective in increasing the
nolse reduction than will the addition of acoustically absorptive
material in the interior acoustic space.

3.7 Response of the Shroud to Acoustic Excitation

Before proceeding to a general formulation of the spacecraft
panel response to acoustic excitation, we formulate the response
of the shroud. This formulation is used in Chapter 5 to predict
the amount of vibratory energy that flows into the mechanical
transmission path.

The resonant and nonresonant response of the shroud 1s
treated separately. As would be expected, the resonant response
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1s much greater than the nonresonant response of the shroud. The
nonresonant response, however, which follows the mass law, serves
as a reference level for the total response.

Finally, in Section 3.7.3 the response of a model of the
0G0 shroud is calculated as an example.

3.7.1 Resonant Response of the Shroud

The resonant response of the shroud can be found through the
power-balance Eqs. (19a) and (19b). The remaining power-balance
equations are not needed, since we can express the internal
acoustic-space modal group energy through the calculation of
noise reduction in the preceding section. Equations (19a) and
(19b) can be solved to give

5 . _NeaF,1 (nppp/ny) By + Nopp 3 (nppp/m3) Eg (92)
DAF =
Moar,1 + Moar,3 + Moar
and
= leas,1 (nppg/my) By + Nppg g (nppgma) B (93)
DAS =

Nogs,1 ¥ Moas,3 T Moas

The interior-space modal group energy in these equations is

given by

n
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As in the last section, we assume that the coupling loss factors
Moas .1 and Mopr 1 edual Moas 3 and Nopw 37 respectively. With
3 B 3 3

these results and with Eqgs. (21) and (22), the mean square resonant -

response spectrum is given by

S (2)(f) T Co

a
I -, (@)
s, (2) ey

n 1 n ) _
[ 2aF N2aF,1 |, Poas 2as1 ] [1+1o O.lNR] .
oPo Popm,1toar  2M2as1tNoas
(95)

For particular cases, Eq. (95) can be simplified. The NR by
most shrouds is greater than 5 dB in the multimodal frequency
range. Thus, the excitation of the shroud by the interior sound
field can be neglected in comparison to the excitation by the
external field. Also, the response of AS modes can usually be
neglected in comparison to that of AF modes. Thus, Ea. (95) can
be written in different frequency ranges as

(2)

g (f) T C n n
AL o2 [ oAF "N2AF,1 ] , Tor £<£_or £3f, ,  (96a)
8,0 (8) P AP, TNy 1ToaF

and

a O

1 - 2
Sp()(f) ps()A

S (£) T C n Noas
[ 2AS 2AS,1 ] , for £ JIE, . (96b)

oo “PMopg,1™Moss
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Note that, if the coupling loss factor is much greater than the
dissipation loss factor, then the shrcud response does not
depend on its dissipative damping but is controlled by its
acoustic radiation losses.

3.7.2 Nonresonant Response of the Shell

For the frequency range between the ring frequency and the
critical frequency, the composite response of nonresonant modes
follows the random-incidence mass law., The mean square non-
resonant velocity spectrum is given in Eq. (70). It can be
directly used to obtaln the nonresonant acceleration spectrum:

Sa(f') 2

2

p

The second term in this equation is a correcticn to account for
radiation loading of the structure. Most structures radiating
into air are sufficiently heavy that the correction term is
unimportant at the frequency range being considered. Thus, we
can express an approximation of the forced, nonresonant response
as

5 (1) - (98)
= 2y
5,(£) [ps( )]

The mass-law responce predicted by Eq. (98) represents a limit
in that the additicn of structural damping cannot reduce the
total response of the structure below this level.
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3.7.3 Response of a Model of the 0G0 Shroud

As an example of the general formulation in the previous two
sections, we calculate the response of a model of the 0G0 shroud.
This calculated response 1s used in Chapter 5 to predict the
amount of energy transmitted along the mechanical path to a model
of the OGO spacecraft.

The predicted response in this section may not be accurate
for the actual OGO shroud, since the disspation loss factors of
the OGO shroud are not known. The calculations indicate, however,
that 1n certain frequency ranges the dissipation loss factors do
not control the response of the shroud. For these frequencies,
reasonable agreement is expected between the predicted and actual
response levels of the 0GO shroud.

The resonant response of the 0GO shroud model 1s glven by
Eqgs. (96). These equations require that the noise reduction be
greater than 5 dB. Reference to Fig. 14 shows that this condition
is satisfied by the 0GO shroud.

The predicted response levels in dB re 1 g for two values of
the loss factor Moaw and Mopg are presented in Fig. 15. These
levels are obtained from Eq. (95) by the relationship

S (2)(f) S (1)(f)

AL, - SPL. = 10 log - 10 log (99)
2 1 10 4802 o 00027

where AL 1s the acceleration level re 1 g, SPL 1s the excitation
sound pressure level re 0,0002 pbar, and S, and Sp are 1in cgs
unlts. Below the ring frequency and above the critical frequency,
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the predicted acceleration levels are greatly increased due to

the presence of AF modes in the shell. Note that a factor of 3
increase in the structural loss factor reduces the response

5 dB for ail frequencies, except below the ring frequency. In
thils frequency range, the AF modal responses are radiation-loss
controlled so that a factor of 3 increase in damping does not

reduce the response proportionately.

Since the shroud response i1s not strongly dependent on the
dissipation loss factor it is expected that the predicted
response wlll be reasonably accurate for the actual shroud.

3.8 Response of the Spacecraft Panels to Acoustic Excitation

In this sectlion, we calculate the response of the spacecraft
panels to acoustlc exciltation by the interior sound field. This
calculatlion 1s combined with the calculation of noise reduction
1n Chapter 5 to predict the response of the OGO spacecraft panels
to acoustilc excitation of the shroud. In the present section,
we treat resonant and nonresonant response separately.

3.8.1 Resonant Response of the Spacecraft Panels

The resonant response of the spacecraft panels can be
calculated through the power-balance Eqs. (19d) and (19e).
These equations predict that

1 n
Ep = 4AF, 3 _4AF E, (100)

Myar,3 T Tuar B3

and
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E, . (101)

In the flat spacecraft panels, all modes below the critical
frequency are AS, while all modes above this frequency are AF,
Thus, either Ea. (100) or (101) gives the total energy of resonant
modes in the panels. ‘Using Eqs. (21 - 23), the spectral accelera-
tion of the panel is

Sa(u)_,(ﬂ o
sp(s)(fj T o

T , (102)

bjltrj
=

7
s By

o "3

where Eq equals EAAF’ above the critical frequency, and E4AS
below this frequency,

3.8.2 Nonresonant Response of the Spacecraft Panels

The nonresonant response below the critical frequency of the
spacecraft panels 1s given by the mass-law response, Eq. (98).
As in the case of the shroud model, the radiation loading can be
neglected, so that the forced response of the spacecraft panels
can be written as¥

(4)
sa () o 2
= . (103)
Sp(3)(f) [ps(4)]

* The panels are excited on both sides by the sound field, so
that the response predicted by Eqg. (99) must be multiplied by
two.,
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Thls response represents the smallest response that can be
achieved by the addition of panel damping.

3.8.3 Response of a Model of the 0GO Spacecraft Panels

As an example of the general formulation of the spacecraft
panel response, we calculate the response of a model of the 0G0
spacecraft to excltation by the interior sound field. The
spacecraft model is shown in Figs. 1 and 16, and is described
in Sectlon 3.1. The parameters describing this model are listed
in Table I.

The resonant panel response is given by Eq. (102). The
loss factors and modal densities reqguired to evaluate this ex-
pression have been calculated from the equations in Section 3.4.
These parameters are plotted in Figs. 12 and 13. The critical
frequency of the 0GO spacecraft panels is at 500 Hz, and is a
factor of ten below the shroud critical frequency. This large
difference occurs because the spacecraft panels are sandwich
pranels and have a higher bending-stiffness-to-weight ratio than
the shroud. Since the critical frequency of the 0G0 panels is
low, the panel response 1s radiaticn-loss controlled over a
large range of frequencies. The resonant response predicted
by Eq. (102) is plotted in Fig. 16, for two values of the dis-
slpation loss factors MyAR and Myas® In the range 200 to
2000 Hz, the response 1s reduced only slightly by a factor of
3 increase in the dissipatlon loss factor. For this reason, the
predicted response of the panels to excitation by the interior
nolse field should be in reasonable agreement with the response
of the actual 0GO spacecraft panels.
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The nonresonant mass-law response of the 0G0 panel models is
given by Eq. (104), and is only a function of the panel surface
denslity. This response, which 1s plotted in Fig. 16, can be com-
pared with the resonant response. Because of the high bending-
stiffness-to-weight ratio of the spacecraft sandwich panels, the
resonant response 1s very much greater than the mass-law response,
A similar result was found below the ring frequency for the shroud
response. In that case, the bending-stiffness-to-weight ratio was
high because of curvature of the shroud wall. In general, panel
structures with high bending-stiffness-to-weight-ratios will have
response levels significantly higher than the mass-law prediction,

This calculation concludes our study of the acoustic path.
The particular calculations developed in thils chapter are used in
Chapter 5 to predict the spacecraft response to a sound field
exterior to the shroud. First, however, we analyze the trans-
mission of vibratory energy in the mechanical transmission path.
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L. ANALYSIS OF THE MECHANICAL TRANSMISSION PATH

In this chapter, we find the response of the spacecraft
panels to vibratory energy transmitted along the mechanical
transmission path. The structural elements of this path are
shown 1n Figs. 1 and 3. These elements are generally similar
to those of the 0GO spacecraft assembly. However, the
structural parameters that describe them are left falrly general
in the formulation, so that the results can be applled to other
spacecraft assemblies. As an example, the spacecraft panel
response 1s computed for a model of the OGO spacecraft assembly.

The discussion and calculations of this chapter closely
follow those of Chapter 3. Thus, the background and validity of
the prediction methods 1s not discussed in detail. The trans-
misslon of energy by resonant and nonresonant mounting truss
motions i1s considered separately.

The first step in the analysis is to replace the elements
of the actual spacecraft assembly with idealized models. These
models are described in Section 4,1,

4,1 Detalled Description of the Mechanical Path Elements

The structural elements that make up the mechanical trans-
mission path are shown in Figs. 1, 3, 17, 18, and 19. The
exclting sound pressure fleld, element 1, and the shroud model,
element 2, have been discussed in Section 3.1,

The spacecraft, element 4 in Fig. 3, 1s modeled in our
theoretical analysis by four flat panels in an open-box con-
flguration. The box 1s open at the top and bottom. The para-
meters required to describe the spacecraft panels are the total



panel area A4’ the panel surface mass density ps(q), the bending
radius of gyration Kq, and the longitudinal wavespeed cz .
The modeling of the spacecraft by an open box of panels
allows certain assumptions that would not be possible with a closed
box. The open box is very responsive to torsional excitation
around the axls of the connected edges. Thus we can neglect the
mounting-truss motion that does not excite the box by torsion
around this axis., The closed box, on the other hand, responds
equally well to all excitations at the corners. Over all, however,
it 1s significantly less responsive to excitation by the mounting
trusses than 1is the open box. The method of analysis in this
report would be valid for the closed hox, but the resulting pre-
dictions of spacecraft panel vibration due to excitation by the
mounting trusses would not be the same as the predictions obtained
in this report.

Element 5, the ring frame, provides the principal support
for both the spacecraft and the shroud. We have modeled this
element by circular channel beam with radius a5, lineal mass
density pz(B), wavespeed for flexure normal to the shroud cf(5),
and torsional wavespeed ct(B). The beam 1s connected along its
length to the base of the shroud and is, therefore, intimately
coupled to its motion., Motion in the plane of the shroud wall is
very small and can be neglected relative to the torsional and
transverse flexural motions. The flexural wavespeed 1s glven by

. (5) _ [M (5)

1/2
£ = £ cﬁ(B)] , (104)

where w is the radian frequency, °£<5) 1s the longitudinal wave-
speed along the beam, and K 5 is the radius of gyration for
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flexure normal to the shroud. This radius of gyration can be
expressed in terms of the channel beam dimensions as

1/2
o) = [lame/2)® 4 <x3+y3>/3] , (105)
£ a + w

where X = a-y and y = (a2+wt)/?(a+w). The torsional wavespeed
is given by

ct(5) = o VETT (106)

where Cq is the shear wavespeed along the beam, K is the stiff-
ness constant for torsional motion, and J is the polar moment

of inertia.28

The mounting trusses, element 6 in Fig. 3, are modeled by
four strai%gg channel beams with lengths £6, surface mass
density Py
speed corresponding to flexure in the plane of the channel
base, cf(5) (see Fig, 19).

» torsional wavespeed ct » and flexural wave-

Because of the open-box construction of the spacecraft,
flexure in the plane of the channel beam legs (the vertical
plane) will induce negliglible motion in the spacecraft panels--
negligible, that is, compared to the motion induced by torsion
and by flexure in the channel base plane., Therefore, in the
analysls, we can neglect the vertical component of flexure.

The four mounting trusses are connected rigidly to the
ring frame and to the corners of the spacecraft. In Figs. 17

00)
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and 19, the configuration of the spacecraft and ring frame relative
to the mounting trusses is shown. Each mounting truss makes an
angle of 0.44 radians, or approximately 25°, with the axis of the
spacecraft,

The mounting trusses for an actual spacecraft assembly may
be more complicated. For example, each mounting truss for the
OGO spacecraft 1s a double beanm (wishbone) connection between the
corner of the spacecraft and the ring frame. We can model the
double-beam truss by a single beam, provided that certain pro-
perties of the single beam truss--e.g., the torsional rigidity,
the bending rigildity normal to the plane of the wishbone, and
total mass--are chosen so as to be equal to that of the double
beam truss.

The four structural elements of the mechanical transmission
path form a connected set of multimodal systems. Thus, the next
step in predicting the response of the elements by statistical
energy analysls 1s the division of the modes in each element into
groups of similar modes.

4,2 The Division of Modes of Each Element into Groups of
Similar Modes

In our analysis of the acoustic path, it was necessary to
divide the modes of the shroud into four groups. For the analysis
in thils chapter, however, this is no longer necessary, since all
modes 1n the shroud are intimately coupled to both torsional and
bending modes 1n the ring frame. Also, unlike the acoustic path
analysls, nonresonant modes in the shroud can be neglected, since
thelr energy is small and they are not more strongly coupled to
the ring frame than are the resonant modes.
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The modes of the ring frame and the mounting trusses must
be divided into several groups. An appropriate grouping for a
particular frequency band is shown in Fig. 20. The modes of the
ring frame and mounting truss have been divided into resonant
and nonresonant torsional modes and bending modes corresponding
to bending in the vertical and horizontal planes. Also, the
spacecraft panels have been divided into resonant and nonresonant

modes.

We can now make a number of simplifications that allow
power-flow interactions between certain sets of modes to be
ignored or simplified. Motion of the ring frame in the vertical
direction is inhibited by its connection to the shroud. Thus,
we will not consider ring frame modes of flexure in the vertical
plane, since these are restrained to have very small motion.

The spacecraft model that we have selected is very re-
sponsive to torsion around the vertical axes of the box. Such
a torsion results from both torsional waves and flexural waves,
with displacements parallel to xq in Fig. 21. Both of these
motions are generated by flexure of the ring frame., Torsional
waves in the ring frame generate flexural displacements in the
Xps x3 plane, which will not produce axial torsion on the space-
craft. We therefore neglect torsional modes of the ring frame
and bending modes in the Xq direction of the mounting trusses,
since the spacecraft panels are not excited by these modes,

In our consideration of the power flow, we allow the
torsional- and bending-wave modes in each element to be coupled.
This is a realistic allowance, since bending and torsional
motions in beams with complicated cross sections are usually
coupled by stiffness or inertial forces.
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The paths of power flow that we consider in the statistical
energy analysis are shown in Fig., 20. In Section 4.3, the power
flow along these paths is formulated in terms of the modal group
energies. In this way, expressions can be obtained for the
acceleration spectrum of the elements in the mechanical path.

4.3 Formulation of the Power-Balance Equations

The modal groups outlined in Section 4.2 are all similarly
coupled to the other groups of modes and are similarly damped.
Thus, we can predict theilr time-average total energy in fre-
dquency bands, by using the fundamental power-balance equation,
Eq. (17). In our formulation, we assume that the energy level in
the shroud is known and is given by the results of Chapter 3. In
making this assumption, we have assumed that the power-flow inter-
actions between the shroud and the ring frame are small in com-
parison to those between the shroud and the acoustic fields and
the energy dissipated by the shroud. This will be true in all
cases in which the ring frame and mounting trusses are not highly
damped.

The power-balance equations can be simplified by assuming
that the torsional and flexural modes in the mounting trusses
are strongly coupled. This assumption is appropriate in most
cases, sSince boundary conditions and complex cross-sections
strongly couple these two sets of modes. TUnder the condition
that these modal groups are strongly coupled, their modal
energies will equipart:

(6) (6)

E E

t _ _°f

7. = ON (107)
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(6) (6)
t £

torsional modes in the mounting truss. The case of equipartition
g

where n and n are the modal densities for flexural and
of modal energy allows two groups of modes to be considered

together, even though they are not similarly coupled to the other
groups of modes. The loss factors for the over-all group will

be the average loss factor of each mode in the group, e.g.

(6) (6)
_ M Met,ut By T Mep oy (108)
6,4 n, ) + 0, (0) :

We now obtain a set of power balance equations similar to those
obtained for the acocustic path, in Chapter 3. Power balance on
the resonant flexural modal group in the ring frame gives

E E E E I
5 _6]._ 2 _5 5,6NR _
5,6 n5[n5 nG] T15,2n5[ng n5] Fsts = =0
(109a)

where "5" refers to the flexural resonant modal group in the
ring frame, "6" refers to the composite flexural and torsional
5,6NR is the flow

to nonresonant mounting-truss modes. In this equation, neg is

resonant group in the mounting trusses, and I

the sum of rescnant modes in all four mounting trusses. Power
balance for the mounting-truss resonant modal group gives

E E E E
6 6 4
715’6 n5[;1-§ - Eg} - 716,4 n6|:;l‘6" - ‘TE:I - ”636 =0 . (109Db)

Power balance for the spacecraft panels gives
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6 U 6NR, 4
g, 416 [5'6‘ ) EZ] R - My Ey =0, (109¢)

where H6NR,4 is the power flow from nonresonant mounting-truss
modes. This set of equations is used in Sections 4.6 and 4.7 %o
predict the spectral acceleration of the elements in the mechanical
transmission path. As for the acoustic path, flow of energy in
resonant and nonresonant modes 1s considered separately. First,
however, we calculate the necessary coupling loss factors, dissi-
pation loss factors, modal densities, and nonresonant power flow
needed to evaluate the power-balance Egs. (109).

4.4 Calculation of the Modal Densities and Loss Factors

Our next task is to evaluate the modal densities and loss
factors that appear in Egs. (109). Fortunately, many of these
parameters have already been found by other authors and appear
in the literature., As in the case of the acoustic path elements,
we do not find the exact parameters for any one system but,
rather, we find expressions that are valid for an ensemble of
similar structures which vary only in fine detail. 1In calculating
coupling loss factors, we calculate the power flow between two
infinite structures. We hypothesize that the average coupling
loss factor between a mode in one element and a mode in the
other element is given by this calculation.

4.4,1 Calculation of the Modal Densities

To evaluate the power-balance equations, we must know the
torsional- and bending-wave modal densities in the ring frame
and the mounting trusses. These modal densities for a straight
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beam are given in Ref, 15 and in our notation are

b4

(F) = 110

na(f) (a)/cfcﬂ)lfz (110)
and

ng (f) = %f . (111)

The above equations do not take into account the curvature of

the ring frame. Only the lowest-order mode, however, correspcnd-
ing to uniform radial motion is appreciably affected by curva-
ture. Thus, the above equations are valid expressions for the
modal densities of both the ring frame and the mounting trusses.

The modal densities of the shroud and spacecraft panels

were calculated in Section 3.4.6.

L,4,2 Calculation of the Shroud to Ring-Frame Coupling

Loss Factor

The ring frame is intimately attached along its full length
to the shroud. Thus, we can presume that its coupling loss
factor to the shroud will be large. More specifically, we
presume that the ring frame to shroud coupling loss factor
exceeds both the coupling loss factor to the mounting trusses

and the dissipation loss factor

T15,2 >> n5,6 + 715 (112)
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4.4,3 Calculation of the Ring-Frame/Mounting-Truss

Coupling Loss Factor

The required ring-frame/mounting-truss coupling loss factor,
n5,6, is the average coupling loss factor between flexural modes
in the ring frame, with displacements normal tc the shroud and
flexural and torsional modes in the mounting trusses.

The vibrational field of the ring frame can be simulated by
a number of traveling waves in an infinitely extended ring frame.
The sum of the mean square amplitudes of the traveling waves 1n
the infinite structure is related to the mean square displacement
and time-average total energy of the ring frame by

]
\ 1

ly512 = 4 <X§> = (113)

where |y5|2 is the sum of the mean-squared complex amplitude
magnitudes of the traveling waves, <X§> i1s the space-time mean
square displacement of the ring frame, M5 is the total mass of
the ring frame, and E5 is its time-average total energy.

Our method of calculating n5’6 is to find the power flow from a
traveling wave in the infinitely extended ring frame of complex
amplitude y5 to a semi-infinite mounting truss. The coupling

loss factor 5,6 is then given by
2

W1,
e g = —22 (114)
55 w E5
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where H5 6 is the power flow from the traveling wave on the

2
infinite ring frame to the semi-infinite mounting truss¥*, and
E. is the time-average total energy in the ring frame

5

corresponding to this traveling wave amplitude.

The infinite ring frame has an internal impedance as a
source of excitation for one semi-infinite mounting truss. This
impedance is the ratio of moment to angular velocity parallel
to the spacecraft axis at the point of its attachment to the
mounting truss. In terms of the ring frame parameters, assuming

e"lcDt time-dependence, this source impedance 1329

_ o 2 -1
Zg = 2(1 - 1)py5 kpg” Cps” Cpp . (115)

Ring-frame flexure will excite both torsional and flexural
waves in the mounting truss. The ratio of the complex moment
amplitude at the end of the truss to the resulting angular

30

velocity amplitude is

T
Zg" = Pys *g6 16

(116)
where K¢6 is the polar radius of gyration of the mounting-truss
cross section., The mounting-truss flexural impedance is taken
to be the ratio of moment applied to a pinned end of the semi-

31.

infinite truss to the resulting angular velocity

Z6' = (1-0pjs o6 Cg6 Cp5 - (117)

¥ The factor of four arises since there are four mounting trusses
attached to the ring frame,



The total load impedance that the mounting truss presents to the
ring frame at the attachment point 1s derived from Z6t and Z6f.
The junction between the ring frame and mounting truss is re-

constructed in Fig. 21. The ring frame is constrained to have

flexural displacements in the X direction only.

Let Qt
torsion and flexure at the junction, as shown in Fig. 21. Since

and Qf be the angular velocities due to mounting-truss

the ring frame will not allow angular velocity in the X direction
at the Junction,

Qp cosb = Q sin® (118)

The axial (or x3) component of angular velocity at the Junction
is

= { e
Q3 Qp sinf + Qt cos . (119)

The torque producing this axlal angular velocity at the Junction

is
73 = Tt cosb + Te sinfé (120)

where Tt and Te are related to the appropriate angular velocities
by the impedances expressed in Egs. (116) and (117). One has,

therefore,

— 6
T3 Q.7 cosb + QoZ, sin® . (121)
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We define the ratio of T3 to 93 as the mounting-truss load

impedance Z6:

-1

Zg = (Zg° + Zg' tan"9) (1 + tan“6) (122)

We see that this expression is correct, since the impedance
obtained in the limits of 6 = 0 and € = m/2 1s correct.

The power transferred from the ring frame to one infinite
mounting truss can be expressed in terms of these impedances
and Qg. Qg is the axial component of angular velocity of the
ring frame at the junction with the mounting truss detached,
and is expressed as

2 2 2
221 =0 ke Iyl (123)

where kf5 is the flexural wavenumber, and y5 is the incident-wave
amplitude. The power transferred is obtained by considering
the equivalent circuit for the junction (Fig. 22):

2 Z
1 o]
156 =3 |9l 2—5"35:2—6 R (124)

where

R6 = Re (26) p)



and H5 ¢ is the power transferred to the truss. Placing Egs. (124)
3
and (113) into Eq. (114), we get the desired coupling loss factor

8k2'z 2

£5
s w | e | e - (125

If Egs. (115) and (122) are used, all the quantities contained in
Eg. (125) can be calculated from basic structural parameters.

4,44 Calculation of the Mounting-Truss/Spacecraft-Panel

Coupling Loss Factor

The coupling loss factor between the mounting trusses and the
spacecraft panels is a composite loss factor for coupling between
both torsional and flexural modes of the mounting trusses and the
flexural modes of the spacecraft panels. Our method of calculat-
ing this coupling loss factor is similar to that used in
Section 4.4.3. The mounting trusses and the spacecraft panels
are replaced by semi-infinite structures and the power flow from
traveling waves in the mounting trusses to the spacecraft panels
is calculated. The traveling-wave complex amplitude magnitude
corresponding to flexural modes in the trusses is given by

2 4R
el =25, (126)
M6U.)

where Ef6 is the time-average total energy of the flexural
modes 1n the four trusses, and M6 1s the total mass of
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the four trusses. The traveling-wave complex amplitude magni-
tude corresponding to torsional modes 1is

th6l2 = ""i—g s (127)

where Qt6 is the torsional wave angular velocity complex ampli-
tude, Et6 is the time-average total energy of the torsional
modes in the trusses, and x¢ is the polar radius of gyration of
the trusses. The coupling loss factor is given in terms of the
power flow between the semi-infinite structures as

II
ne g = 22, (128)
6,4 N E6

where H6 N is the power flow from all four trusses to the panels,
3

and E6 is the torsional and flexural time-average total energy in

the trusses,

Since we have allowed the torsional and flexural waves to
be intimately coupled, the energy of each mode will be the
same; i.e.,

_t6 _ _f6 , (129)

where nt5 and nf5 are the modal densities of torsional and

flexural modes, It follows that the total time-average energy

is



Lee
Eg = B g + Epg = Eeg (1 + EE%—-) . (130)

At the Jjunction between the mounting trusses and the space-
craft, the source impedance for torsion around the spacecraft axis
is Zg and is given by Eq. (122). The load impedance Z4 of the
panels is taken to be that of a plate edge for a normal moment.
This impedance, for the semi-infinite panel, has been computed

by Eichler.32 His expression 1is

ps(4>xacz4 (A-1B)

2 A2+B2

; (131)

Z
N
Koy

where A = 0.189, B = 0.275 1n (kg w/2.5), kg is the flexural
wavenumber, and w is the half-width of the mounting truss (see
Fig. 19). The power transferred from one mounting truss to the
panels is given by

R, (132)

where H6 L is the power flow from all four trusses to the panels,
Q6 is the total axial component of the truss angular velocity
when it is pinned at the Junction but the spacecraft is discon-
nected, and Ru is the real part of ZA' The total mean square
axial component of angular velocity is the sum of components due
to flexure and torsion in the mounting trusses:
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2
21981 = Zgg” o Iyl %0 5 faggl® cos® . (133)

Placing Eq. (133) in Eq. (132) and using Egs. (126), (127),
(130), and (128) to define ng y» We arrive at

n 2
, , sin29 + t6 cos“6
n 2 2
k R Z 6 k K
6,4 aMg Zg + 2y 1+ /MNeg

The calculations of this coupling loss factor are clearly
tedious and require the use of a digital computer.

4,4,5 Estimation of the Dissipation Loss Factors

At the present time, we must experimentally determine the
internal loss factors my, N5, and ng that describe the dissipa-
tion in the spacecraft, the ring frame, and the mounting truss.
Some recent gains have been made in the estimation of internal
damping of structures,35 but they are not sufficiently advanced
so that we can confidently use these estimates for engineering
predictions. No experimental data on the 0GO structure was
available for our analysis; therefore, we estimated the dissi-
pation loss factors on the basis of past experimental data from
similar structures. The estimate that we obtained is

Ny = Mg = Mg = 10-2 . (135)




4.5 Calculation of Nonresonant Vibration Transmission

Tn Section 4.3, we formulated the vibration transmitted from
the ring frame to the spacecraft by resonant motion of the four
mounting trusses. In this section, the vibration transmitted by
nonresonant motion of the mounting trusses is formulated. In

this formulation, the mounting trusses are represented as 'pure
stiffness elements." Thus, the three-element system (ring frame,
mounting truss, and spaeecraft) can be analyzed as a two-element
resonant modal system (ring frame and spacecraft) with stiffness
coupling, so that the fundamental result for power flow between
two groups of resonant modes, Eq. (12), can be used.

In representing the mounting trusses as "pure stiffness
elements," we are neglecting the mass-controlled, nonresonant
motion of the mounting trusses. This idealized situation is in
direct contrast to the case of acoustic noise transmission through
the shroud, where only the mass-controlled motion was considered.
It seems intuitively clear, however, that the bending and
torsional modes of the mounting trusses will not respond signifi-
cantly when excited at frequencies well above resonance,

The modal stiffness of a beam in bending or in torsion is,
in general, different for each mode; therefore, it is not clear
what value of coupling stiffness should be used in our formu-
lation. We have chosen to use the static stiffness of the
mounting trusses in bending and torsion. This choice is equi-
valent to considering the mounting trusses as massless.

The power flow from the ring frame to the spacecraft panels
through nonresonant modes of the mounting trusses is given by
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Tenr,4 = M5, 68R,4 5 [Hg Ty ] ' (136)

To calculate the ring-frame/spacecraft coupling loss factor
g,y We follow the procedure used in Sections 3.4.3 and 3.4.4.
First, we calculate the time-average power transferred from an
infinitely long ring frame to semi-infinite spacecraft panels
when a bending wave traveling along the ring frame impinges on
the ring-frame/mounting-truss junction. The desired coupling
loss factor is then calculated from the relationship

5,6NR,4 = 6N, 4@ B5 (137)

where H6NR,4 is the power transferred by all four mounting
trusses, and E5 is the time-average total energy associated
with the incident bending wave in a section of the infinite ring
frame that has the same length as the finite ring frame.

M
Eg = Z—LE |Q§|2 P (138)
Kog

where kf5 is the flexural wavenumber; Qg is the complex angular-
velocity amplitude at the ring-frame/mounting-truss Junction
when the mounting truss is detached, and M. is the total mass

5
of the ring frame.

We now calculate the time-average power flow from the ring
frame to the spacecraft when a traveling flexural wave with
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complex angular-velocity amplitude Q; impinges on the ring-frame/
mounting-truss Jjunction.

With the moment and angular-velocity vectors defined as in
Fig. 23, the constitutive relations for the ring frame, mounting
truss, and spacecraft are given by Egs. (1392), (139b) and (139¢),
respectively:

T = 25‘95:1 ) (1393-)
K

T = 150 - %) (139D)

P =70, (139¢)

where Q5i is the angular velocity induced 1in the ring frame by
the reaction moment T, 95 and Q6 are the angular veloclty com-
ponents along the spacecraft axis at the ring-frame end and the
spacecraft end of the mounting truss, K is the static stiffness
of the mounting truss, and 94 is the angular velocity at the
spacecraft corner. The moment impedance 25 of the ring frame is
given by Eq. (115) and the moment impedance Z, of the spacecraft
1s given by Eq. (131). The static stiffness K of the mount ing
truss is calculated later in this section.

Geometric compatibility for the ring-frame/mounting-truss

junction and the mounting-truss/spacecraft junction requires
that
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- ot (140a)

and

Q6 = 94 . (1401))

Combining Egs. (138) and (140) ylelds the spacecraft angular-

velocity amplitude Q4, in terms of the incident travelling-wave

angular-velocity amplitude Qg

KZ5 o (141)
3 Q . 141
+ KZu + 1w 2425 5

Q, =
4 K25

The time-average power flow into the spacecraft from one mounting

truss is

TN, 1

——ﬂfl—-= <RelTe

where H6NR,4 is the power flgw from nonresonant motion of all
four mounting trusses and Qq is the complex conjugate of 94‘
Using Eaqs. (139¢) and (141) in Eg. (142) yields the desired
expression for the time-average power flow:

Tenr, Kz 2

1
it 2 | K(Zy + Z)F 1,75

Relz,] 927 . (183)
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Equation (143) can be obtained also from the "equivalent circuit'

shown in Fig. 24. The coupling loss factor n5 6NR. 4 follows from
2 3

Egs. (137), (138), and (143):

2 2
8k K25

n =
5,6NR, 4 & K(Z, + Z5) + 1077

- Re[Za] . (144)

To conclude our formulation, we now calculate the static
stiffness K. The angular-velocity amplitude at each end of the
mounting truss can be resolved into a flexural and a torsional
component, as shown in Fig. 21. The moment at each end of the
truss can be resolved similarly. The bending moment Te and
flexural components of the angular velocities at the ring-frame
end, Qf(5), and at the spacecraft end, Qf(6), are related by

£~ Iw

K
L (2,(%) - 0, (8)), (145)

where Kf is the static stiffness of the truss in pure bending

33

and is given by

2
~ EA6Kf6

K. =
‘e

£ ; (146)

where E is the modulus of elasticity of the mounting truss
material, A6 is the mounting truss cross-section area, Kog

is the radius of gyration of the mounting truss, and 36 is the
length of one mounting truss.
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The torsional moment Tt and the torsicnal components of the

‘ angular velocities at the ring-frame end, Qt(5 , and at the
‘ spacecraft end, Qt(6 , are related by

[

\

=12 (0,0 _ 0, Oy | (147)

where Kt is the static stiffness of the truss in pure torsion

given by33

3
K, = 3ot (148)

where G is the shear modulus of the truss material, b is the
length of the truss cross section, (see Fig. 19), and t is the
thickness of the truss cross section.

Equation (148) is actually the torsional stiffness of the
rectangular section obtained by straightening out the truss
cross section shown in Fig. 19. This calculation is Justified
34 which shows that the torsional
stiffness for thin, unclosed cross sections depends only on the

by Prandtl's membrane analogy,
length and thickness of the cross section.

The mounting-truss stiffness K in combined bending and
torsion can be calculated in the same manner as the mounting-
truss impedance, which is calculated in Section 4.4.3. The
expression

K = (Kt + K tange)(l + tange)'l (149)

f
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is identical in form to Eq. (122).

The truss stiffness given by Eq. (149) can be used in
Eq. (144), for the coupling loss factor 5,40 and, finally, the
power flow due to nonresonant mounting truss motion is given by
Eq. (136).

4,6 Formulation of the Ring Frame to Shroud Response Ratio

In this section, we use the power-balance Egs. (109) to pre-
dict the ratio of the ring-frame/shroud mean square acceleration
spectra.

We note from power-balance Eq. (109a) that, if the ring-
frame/shroud coupling loss factor n5’2 is sufficiently large,
modal energy equilibrium will exist between the shroud and the
ring frame:

=
=

2 _ 2 . (150)

n
Ut

As discussed in Section 4.1, the ring frame is intimately
attached along its full length to the shroud. Thus, we can
presume that its energy coupling to the shroud will be large
enough that Eq. (150) is a valid estimate of the ring-frame
flexural modal group energy.
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The modal densities n, and ng are given by Egs. (35) and
(110), respectively, while the total modal group energy in the
structural elements 1s related to their mean square acceleration
spectra by

20°E
sa(i)(f) = s L, (151)

where Ei 1s the time-average total energy of the structure, Mi is
its total mass, and & is the bandwidth of excitation. Thus, we
can express the ratio of the ring-frame mean square acceleration
spectrum to the shroud mean square acceleration spectrum as

2 o (152)

As an example, we calculate the acceleration spectrum ratio
between models of the OGO ring frame and shroud. These models
are described in Section 3.1 and 4.1, and parameter values re-
presenting them are given in Table I. The modal densities of
these models have been calculated from Egs. (35) and (110) and
were used to evaluate Eq. (152). The predicted response ratio
for the 0GO ring frame and shroud is plotted in Fig. 26. This
prediction, of course, is limited to the multimodal frequency
region in which many modes resonate., We have somewhat arbitrar-
ily required at least two modes per octave band. Because the
modal density of the shroud 1s much larger than the modal
density of the ring frame, its acceleration spectrum is also

=
Q
-3



much greater than that of the ring frame, In addition, the
response ratio decreases with frequency as a direct consequence
of the difference in modal density between the one-dimensional
ring frame and the two-dimensional shroud.

In the general formulation of the ring-frame response, we
disregarded the nonresonant modal response. Based on a mass-law
behavior, the forced nonresonant response of the 0GO ring frame
is approximately 3 dB below its resonant response for all fre-
quencies, so that neglect of the nonresonant response is warranted.
In calculations for other spacecraft assemblies, the forced re-
sponse of the ring frame should be calculated to make sure that
it can be neglected.

4,7 Formulation of the Spacecraft-Panel/Ring-Frame
Response Ratio

In this section, we calculate the ratio of the spacecraft-
panel acceleration spectrum to the ring-frame acceleration
spectrum. This calculation is combined with the calculation of
the ring-frame/shroud response ratio in Chapter 5, in order to
predict the response of the spacecraft panels to energy trans-
mitted by the mechanical transmission path. In calculating the
spacecraft-panel/ring-frame response ratio, we use the power-
balance Egs. (109). Power flow due to resonant and nonresonant
motion of the mounting trusses 1s considered separately.

The ratio of spacecraft-panel time-average total energy
to ring-frame energy due to power transmitted by resonant truss
motion is calculated from the power-balance equations, with
I :

6NR, 4 equal to zero
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E res
4 _ -1
<E5 ) = n5’6 n6’4 [(n6+n6’5+n6’4) (n4+nq’6)-n6’5n4,6] s
(153)
where the loss factors n5 6 and Mgy are related by the
symmetry relation ’
n6 n6,5 = n5 7]5,6 . (154)

The modal densities and loss factors required to evaluate this
equation were found in Section 4.4, The mean square acceleration
spectra of the panels and the ring frame are related to the

total energy in the elements by Eq. (151) so that the response
ratio due to resonant-mode energy transmission is given by

(4)
S, () %i E)
= - 2 (155)
sa(5)(f) M, E.

where EA/EB is given by Egq. (153) and M) and M5 are the total

masses of the spacecraft panels and ring frame, respectively.

If the mounting truss has very light damping and is well-
coupled to the ring frame and the spacecraft, then we can
assume

g << Mg,5 + Mg,y - (156)

In this event, Eqg. (153) simplified to

-
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. res.
<ﬂ) 5.6 6,4

Eg Sy g5ty gyt g5 Ny g

(157)

To calculate the response ratio due to energy transmitted by
nonresonant truss modes alone, we set equal to zero the input
power from the ring frame to the resonant mounting truss modes;
to do this we set E5 equal to zero in the power-balance equations.
Then, we solve for E4 in terms of the nonresonant mode power

I
flow 6NR,4.

II
E), = 6NR, 4 ) (158)

6,414 ,6 J

Equatiocn (158) expresses a power balance between power into the
panels from the nonresonant truss modes, power dissipated in the
panels, and power lost to the resonant modes of the trusses., In
most cases, the second and third bracketed terms in Eq. (158),
which account for power lost to the resonant mounting truss modes,
can be neglected. Then, Eq. (158) becomes

I
E), = ——-—L—ggl: 4 X (159)

In Section 4.5 the power from nonresonant modes was found as

E. B,
Tonr,u = ®M5 6nm, 4 s [ n, Ty J : (136)
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Using this equation in Eq. (158) and solving for the ratio
E4 to E5 gives

nonres,

E
4 > I5 6NR, L
—_— - 20NN, , 160
( E Ny 68R,5 T Ny (160)

where n5,6NR,4 and n4,6NR,5 are related by the symmetry relation,

Eq. (154), and s ) is given by Eq. (144). The desired spectral
k]
response ratio is found by using Eq. (152) to relate these

energies to the mean square acceleration spectra.

4,7.1 Calculation of the Spacecraft-Panel/Ring-Frame
Response Ratio for a Model of the OGO Assembly

As an example, we calculate the response ratio of the
spacecraft panels to the ring frame fcr a model of the 0GO
assembly. The required modal densities and loss factors for
this assembly have been calculated from the results of Section
4.4, The loss factors are plotted in Fig. 25. These parameters
can be used to evaluate Egs. (153) and (159) for the ratios of
the panel response to the ring-frame response due to resonant
and nonresonant motions of the mcunting trusses. These ratios
are plotted in Fig, 26. Note that the responses due to
resonant motion and nonresonant motion are comparable. At high
frequencies, the response due to resonant motion dominates,
while at low frequencies the response due to nonresonant motion

dominates.

This concludes our study of the mechanical transmission
path. In the next chapter we compare the spacecraft-panel
response due to transmission of energy by the acoustic path
and the mechanical path, for a mcdel of the OGO spacecraft

assembly.
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5. COMPARISON OF THE RESPONSE OF A MODEL OF THE 0GO
SPACECRAFT TO ACOUSTIC EXCITATION AND
MECHANICAL EXCITATION

In the first four chapters cof this report, we developed a
general methed for predicting the response of spacecraft assembly
elements to excitation by an external socund field. To illustrate
the method, response ratios of individual elements in a model
spacecraft assembly were calculated. In this chapter, we com-
bine these individual calculations in order to predict the
response of the model spacecraft panels to the external sound
field. The response due to energy transmitted by the acocustic
and mechanical transmission paths is considered separately.

We consider a model of the 0GO spacecraft assembly. Its
elements are discussed in Sections 3.1 and 4.1 and are illus-
trated in Figs. 1 and 17-19. Parameters of this model appro-
priate for the actual 0GO assembly are listed in Table I.

5.1 Response of the Panels to Acoustic-Path Excitation

The response of the model spacecraft panels to energy
transmitted by the acoustic path can be found through the noise
reduction, plotted in Fig. 14, and the spacecraft response to
an exciting diffuse noise field, plotted in Fig. 16, The mean
square acceleration spectrum of the panels is given by

[Sa(a)(f) ]acoustic Sp(B)(f) Sa(a)(f)

o (1) oy D) (3)
Spl(f) Sp (£) 8,02 (r)

, (161a)
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or, equivalently,

I i
10 1 a_ = °a
0815 —1 = 10 log S 3" NR . (161b)

p p

n

N

To evaluate Egs. (161), the noise reduction is taken from Fig. 14,
with 7]2=10'2 and 63=O.1. The spacecraft response to the internal
acoustic field is taken from Fig. 16 with n4=10_2. The predicted
spacecraft response due to energy transmitted by the acoustic path
is plotted in Fig. 27. It is compared to the response due to
mechanical-path energy transmission.

The loss factors P and ny are not based on experimental
or theoretical calculations, but are estimated on the basis of
past experience. Thus, the predicted response levels should be
viewed with some uncertainty.

5.2 Response of the Panels to Mechanical-Path Excitation

The response of the model spacecraft panels to energy trans-
mitted by the mechanical path is given by

L i 4
[Sa( )(f) ]mechan cal Sa<2)(f) Sa( )(f) ’ (162a)

= 2
Sp(l)(f) sp(1>(f) sa( )(£)

or, equivalently,
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where the shroud response to the acoustic excitation, Sa(g)/Sp<1),

is plotted in Fi%. 16, and the spacecraft response to mechanical

. 4 /sa(g), is plotted in Fig. 26. The predicted
spacecraft-panel response due to energy transmitted by the

excitation, S

mechanical path is plotted in Fig. 27 and can be compared with
the response due to acoustic-path energy transmission. The
acoustic-path response dominates the over-all response of the
model spacecraft panels,

5.3 Discussion of the Predictions

The response predictions in Fig. 27 clearly show that the
acoustic path energy transmission dominates the over-all response
of the OGO spacecraft panels. The validity of this prediction
depends, of course, on the validity of the model analyzed and
on the validity of the prediction method.

In modeling the actual OGO assembly, we have made a number
of ldealizations, which are discussed in Section 3.1 and 4.1.
We are reasonably confident that these idealizations do not
significantly affect the validity of the model--i.e., they do
not change the response predictions in any octave frequency band
by more than a factor of 3 (5 dB). The structural properties of
the model are listed in Table I. These properties were taken
from drawings of the 0G0 assembly supplied by NASA and are viewed
as sufficiently accurate.
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The dissipation loss factors are, by far the largest source
of uncertainty in the predictions. These loss factors were
necessarily based on empirical estimates, which may not be accurate
for the 0G0 assembly. Before a great deal of confidence can be
placed in the predictions, the dissipation loss factors for the
actual OGO assembly should be found experimentally. Appropriate
experimental methods for determining this parameter are discussed
in Appendix A of this report.

Many of the concepts used in statistical energy analysis have
been supported by experiment. This is particularly true with
regard to the prediction of energy interactions between two
acoustic or structural elements. Experimental support of trans-
mission problems in which many acoustic and structural elements
interact is not as extensive. A set of experiments for a multi-
element spacecraft assembly is outlined in Appendix A. These
experiments would lead to a greater understanding of such problems
and could be used to support the theoretical predictions of this
report.

Finally, it should be pointed out again that statistical
energy analysis leads to predictions of the average response
levels of an ensemble of structures. Variations from this average
are to be expected and can be appreciable when the number of
modes in a given frequency band is low.




6. CONCLUSIONS

The study presented in this report provides the necessary
guidelines for analyzing the vibration environment of spacecraft
assemblies. Perhaps the most difficult step in the analysis is
the selection of a model of the assembly in question. If
statistical energy analysis is to be used, modelling of the
assembly is simplified. Only gross geometric and structural
properties are required. Small details such as panel boundary
condltions, the exact geometry of the acoustic space, and the
exact configuration of the shroud/ring-frame/mounting-truss
connection are not required.

In this report, we have illustrated ocur analysis technilque
by obtaining the vibratory response of a model of the 0G0
assembly. The extent to which the results are an accurate pre-
diction of the vibratory environment of the actual 0G0 assembly
depends on the accuracy of the model. Because the primary goal
of our study has been to develop a method of analysils rather than
to obtain specific results, the model selected i1s oversimplified.
We have neglected the contribution of the conical section of the
shroud to the scund transmission. We have not considered the
vibratory response of antennas, solar panels, or particular items
of equlpment in the spacecraft. We have considered the space-
craft to be an open array of panels, whereas on at least one 0GO
spacecraft 1t 1s a closed array of panels. Finally, we have not
considered the mass-loading effect of instruments connected
directly to the spacecraft panels. Two of the 0G0 spacecraft
pranels are heavily loaded with equipment. In spite of having
neglected the above effects, we believe that the predicted
spacecraft panel response is within 5 dB of the response of the
actual OGO spacecraft panels. Our results (see Fig. 27) show
that the acoustically induced response of the spacecraft panels

-
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is 10 to 25 dB greater than the response caused by mounting-truss
vibrations. Thus, we conclude that the acoustically induced
response of the actual OGO panels will dominate the total response
of the panels. 1In addition, we conclude that the acoustic path is
of greater importance for all spacecraft assemblies in which the
spacecraft consists of an array of panels that are supported by
mounting trusses. OSpacecraft assemblies that are arrays of beams
supported by a truncated conical structure (e.g., the Mariner)

do not fit into this general class.

Once we have found a model that accurately describes the
spacecraft assembly, the statistical energy analysis procedures
described in this report can be followed. The results obtalned,
however, must not be accepted blindly. First, statistical energy
analysis requires an accurate measure of the internal damping of
the structural elements involved. Second, statistical energy
analysis requires that there be many resonant modes, at least two
or three, within each octave band of frequenciles. The accuracy
of the results provided by the analysls depends on the extent to
which these two requilrements are fulfilled.
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APPENDIX A. EXPERIMENTAL ANALYSIS OF RANDOM LOAD TRANS-
MISSION TO A SHROUD-ENCLOSED SPACECRAFT

In this Appendix, we discuss a number of experiments that
could be performed on a model of the OGO spacecraft-shroud
assembly. These experiments would lead to a greater under-
standing of vibratory energy transmission in such systems.

It is hoped, of course, that their results would support the
theoretical analysis contained in this report. Such experi-
mental support is desirable because many of the concepts used
in the statistical energy analysis of transmission problems

are in their early stages of development. We feel that the
theoretical analysis gives a good picture of the transmission
processes, but there always remain points that are difficult

to resolve by theoretical analysis alone. The experience and
techniques that would be developed by a set of experiments like
those described in this Appendix would be invaluable for further
applications of statistical energy analysis to the transmission
of random loads in spacecraft assemblies.

In the following sections, we present some general guide~
lines and considerations for the design of the experiments.
We also discuss scaling laws for acoustic and structural
vibration experiments. Then, we outline speciflic experiments
that are appropriate for studying a model of the 0GO spacecraft
assembly.

Al.1 General Considerations in the Designh of Experiments
Experiments on structural configurations that are exposed

to random acoustic environments are carried on for a wide variety
of purposes. For example, environmental testing includes experi-



ments that are designed to "proof test" a structure. In such tests,
the structure is subjected to an anticipated environment and one
determines whether or not its structural integrity and/or its
operational behavior are affected by the environment. Tests may
also be run at lower levels of excitation, to determine antici-
pated response at locations where sensitive equipment may be
mounted. Vibration and acoustic specifications may be generated
for particular equipments by such tests.

A second major class of experiments is designed merely to
gather data on structural and acoustic parameters. These para-
meters are usually obtained experimentally, either because they
cannot be conveniently calculated or because there 1s some wish
to correlate a calculation with an experimental study. The exper-
iments may be designed to gather only a few bits of structural
information or they may be designed to define almost all of the
major parameters of the system. 1In either case, the result of the
experiment is a list of data that is to be used in theoretical
analyses for the prediction of some other more complex bit of
information about structural behavior. Many of the experiments
that we describe here fall within this category. 1In fact, we pro-
pose measurements of many structural parameters that can be cal-
culated from theoretical notions. In this way, vibration-
transmission predictions that use the concepts of statistical
energy analysis can be based upon as much experimentally derived
information as possible.

There are also experiments that one might call '"research
tests."” Such experiments are used to test theoretical calcula-
tions of modal density, response ratios, dampilng, or other para-
meters. They may also be used to test theoretical assumptions
about the way that the structure is behaving in various segments,
frequency ranges, or modes of motion. Most of the proposed




experiments fall in this category.

The spacecraft assembly model that we analyze is shown in
Fig. 1. The detailed structure of this model is shown in Figs. 4,
5, and 6, and is discussed in Chapters 3 and 4 of the text. The
experimental model should be designed to be as flexible in use as
possible. It should be easy to dismantle, and the addition of
structural damping and acoustic absorption should be relatively
simple. We do not feel that there are any conflicts between
these requirements and the fundamental necessity for the model
to be representable by the dynamical considerations outlined in
Chapters 3 and 4.

To gain flexibility and to reduce the expense of an experi-
ment, it is often desirable to construct a scale model of the
spacecraft assembly. Appropriate scaling laws and the problems
involved in scaling are discussed in the Section Al.2 of this
Appendix.

Al.2 Scaling of Acoustic- and Structural-Vibration Experiments

A logical approach in designing scale models is through di-
mensional analysis. Using this approach, we must first determine
those parameters that describe the actual spacecraft assembly and
control the response spectra of the individual elements. Then,

a set of independent dimensionless groups can be formed by
dimensional analysis. In scaling, it 1is necessary only to keep
each dimensionless group constant.

Earlier in this report, we proposed that the multimodal

response spectrum of each element in the acoustic and mechanical
transmission path can be formulated in terms of the diffuse-field
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excitation spectrum and bandwidth and the gross properties of the

elements.

1.

More specifically, we proposed that

Acoustic spaces in the assembly are described sufficiently
by their volumes, by the density and speed of sound of the
contained acoustic media, and by their dissipation loss
factors.

Panel structures, the shroud and spacecraft, are suffi-
ciently described by their geometry, including curvature,
and the location of ribs and baffles, their surface den-
sity, bending- and longitudinal-wave speed, and dissipa-
tion loss factors.

Beamlike structures, the ring frame, and the mounting
trusses, are sufficiently described by geometry, includ-
ing length, curvature, and the geometry of their connec-
tion to other elements, their lineal density, bending-,
longitudinal-, and torsional-wave speeds, and dissipation
loss factors.

The mean square response velocity in a frequency band A of each
element in the assembly can be expressed as a general function of
these parameters,

}_J-

s, (1) 4
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where Sv(i) is the velocity spectrum of the ith element, S_ is the
excitation sound-pressure spectrum; £ and A are the band center
frequency and bandwidth of the excitation; F[ ] represents a
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functional relationship; the Vi's are the acoustic space volumes;
the z 's describe the over all geometry of the structural elements;
Po is the density of the media w1th1n(t?e acoustic spaces; the

Py 's are surface densities; the Py 's'are lineal densities;

o is the acous§1c speed of sound; the cz(l) are longitudinal-wave
speeds; the cb(l)'s are bending-wave speeds; the ct( )'s are tor-
sional-wave speeds; and, finally, the ni's are internal dissipa-
tion loss factors.

This general functional relationship can be simplified through
the introduction of dimensionless groups. These groups are found

(S22 ). (4). (22,
@ "M D), W] wa

PoCo
Using the above result, it is possible to design scale models that

through dimensional analysis:

Vf3

simulate the behavior of the full scale assembly. It is necessary
only to keep each dimensionless group constant in the scaling.

For example, if we wish to construct a one-half scale model, then
it is necessary to increase the test frequencies by a factor of 2,
since the acoustic speed of sound cannot be easily changed. The
remaining parameters must be scaled according to the dimensionless
groups. If the acoustic speed of sound o is held constant, the
longitudinal-, bending-, and torsional-wave speeds must also be
kept constant. In the important case in which the structures are
homogeneous, these wavespeeds can be held constant by reducing

the bending radius of gyration by the same factor that the over
all structure is scaled. No change of material is necessary.
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The scaling of nonhomogeneous panels or beams by geometrically
similar nonhomogeneous structures does not require a change in
material. Modeling of nonhomogeneous panels by homogeneous panels,
however, usually requires a change in material, to keep all dimen-
sionless groups constant.

The problems involved in scaling are not the result of mater-
ial requirements, since these usually need not be changed. Problems
do arise, however, because of the increased test frequencies,
Measurement problems occur because of increased accelerometer
loading. In many cases, this particular problem can be solved by
use of available lightweight accelerometers and theoretical
corrections to the measurements. A more serious problem occurs
because of ailr absorption. Our dimensionless groups require that
the internal acoustic-space dissipation loss factor remain constant
as the required test frequencies are increased. At very high fre-
quencies, absorption in the acoustic space makes this impossible.
Fortunately, however, the internal acoustic-space dissipation loss
factor in spacecraft assemblies is high because of the presence of
a shroud liner. This allows us to reduce the dissipation loss
factor in the acoustic space of the scale model by removing part
of the liner.

The structural dissipation loss factors also must be held
constant as the required test frequencies are increased. This
requirement imposes few problems, however, since these loss factors
are not strongly dependent on frequency. The loss factors of the
scale models can be increased or decreased to correspond to those
in the actual structures.

In our theoretical predictions and in the dimensional analy-

sis, we have assumed that the exact details of the structural and
acoustic elements of the spacecraft assembly are unimportant in
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determining the response. This assumption can be supported by

- 2tudy of a scale model that satisfies the above requirements. The
study would involve varying the small details of the model and
finding the effect on the response. If no effect were found,

the assumption would be supported. If an effect were found, how-
ever, correspondence between the scale model and the actual space-
craft assembly results may not exist. In such a case, it would be
necessary to include these small details of the assembly in the
dimensional analysis.

As a practical 1limit, scale-model test frequencies should not
exceed 12 keps. The frequency range of interest in the actual 0GO
assembly lies below 5 keps. Thus, a one-half scale model can be
used without encountering serious scaling difficulties. A one-
third scale model could be used over most of the frequency range
of interest. Serious scaling problems would exist only at the
highest frequencies.

Al.3 Outline of Experiments on a Model of the OGO Assembly

In the more-detailed discussions to follow, the mechanical
and acoustic transmission paths are treated separately as they were
in the theoretical analyses. For each of the major acoustic and
structural path elements, we describe experiments to determine
those parameters that are most important in establishing the energy
transfer and storage. For each element, we wish to study modal
density, damping, and coupling loss factors. We also describe
energy transmission experiments that are performed on various seg-
ments of the acoustic and vibrational path. Experiments on
transmission of energy in the vibrational and acoustical paths,
separately and together, are described. In order to study the
individual elements and segments of the transmission path, a high
degree of flexibility in the spacecraft model construction is
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necessary. This flexibility would not be available to us if we

were studying an actual spacecraft assembly. The essential differ-
ence is not in the complexity of the system, but in the degree of
ease with which one can dismantle the various segments of the model
and then reconnect them and have the structure remain in its initial
state. Let us begin our discussion by enumerating the experimental
studies of the acoustic transmission path.

Al.3.1 Experimental Studies of the Acoustic Transmission Path

Element No. 1 in the acoustic transmission path is the exter-
ior acoustic space and the sound field within it that excites the
spacecraft shroud. Two major forms of the exterior sound field
should be investigated. The simplest to generate experimentally
and to correlate with analysis 1s the diffuse reverberant field.

A diffuse sound field can be generated by exciting a large, rea-
sonably "hard" room with a band of noise. Almost any large room
is suitable for this purpose, provided that unusually large acous-
tic absorption (absorption coefficients greater than 30%, say,
over major parts of the wall area) is not present.

Experiment 1. A check on the diffusion of the sound field
can be made by making microphone scans through the space to
see whether the sound-pressure levels remain uniform on the
average (variations less than +1 dB) as one moves about the
space, Strong nonuniformities could result from excessive
acoustic absorption in one part of the contained volume or
perhaps a peculiar modal distribution. The existence of such
effects indicates that the field is nondiffuse. The diffuse~
ness of the field can be increased to some extent by the
proper addition of reflectors and/or absorption material.

There are cases where a nondiffuse directive field may be
more representative of the service environment of the vehicle
than is a purely diffuse sound field. One goal of our experiments
is to test possible differences in the shroud response and in its
sound transmission under these two types of incident sound field.
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A directive field can be created in a room by increasing the
absorption in the room so that the "direct field" of the sound
source extends out, perhaps, a distance of 10 to 15 ft from the
sound projector (s). If the shroud is placed in this field, 1t
will experience relatively more acoustic energy incident from the
direction of the source.

Experiment 2. The region around the source (s) in which a
directive field exists can be found by a microphone scan
throughout the room. The average levels will be highest
near the source and will fall off until they reach the level
of the reverberant field. If the direct field is not suffi-
ciently strong, then the absorption of the room must be
increased.

Item No. 2 in the acoustic path is the shroud model. The
important parameters in the analytical prediction of the acoustic
energy interactions for this model are the modal density, the
acoustic coupling loss factor, and the dissipation loss factor.
These parameters can be evaluated by mechanical and acoustic tests
on the shroud model.

Experiment 3. The modal density of the shroud model can be
found at low frequencies by counting peaks in the response
as the sinusoidal exciting frequency is altered. This tech-
nique is useful until the bandwidth of the individual
resonant modes becomes comparable to the average frequency
spacing between modes., For a model of the 0GO shroud, the
modal density is sufficiently high that this technique will
be useful only up to approximately 40 Hz. A mode count
cannot be carried out above this frequency; however, the
technique of slowly varying the sinusoidal exciting frequency
and studying the response can be used to discover any un-
usual modal distribution at low frequencies in which modes
would bunch together in certain frequency ranges and be ab-
sent in other ranges. If an unusual distribution were

found, it would be worthwhile to change rib positions and
boundary conditions to find their effect on the distribution.

The shroud-to-acoustic-space coupling loss factor should be
found for both the AF and AS modal group. Since the acoustically
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slow modes radiate from the ribs and ends of the cylinder, theilr
contribution to the total radiation can be eliminated by removing
the ribs and baffles from the ends of the shroud model.

Experiment 4. The AF mode coupling loss factor is found by
removing The ribs and baffles and using a mechanical shaker
to excite the shroud in a frequency band. The net power

radiated to the acoustic field from the unbaffled shroud is

( Eo Eq
n = 2w n — - ——->
rad 2AF,1 "2AF\ T, . " ny /’

where Eq and E2, the total time-average energy of the

acoustic space and the shroud, can be measured by a multiply-
ing the total mass by the space-time mean square velocity;
Notot and n, can be predicted theoretically. The net power

.radiated to the acoustic field equals that dissipated:

Thgg = @9Ey

where E1 and nl are known by measurement and previous exper-

iment. The coupling loss factor nEAF 1 can be found through
2
the above equations.

Experiment 5. The AS mode coupling loss factor can now be
found by executing a similar procedure with the ribs and
baffles in place. In this case, the net power radiated
from the baffled shroud is

E E1
Trad = “oar,1 Poar < R =
rad 2AF, Dot ot n,
E E
2 1
+nCU n <—' - = > K]
2AS,1 T2AS n2tot n,
where only nAS,l and nrad are unknown. nrad is found

through ”1 and El so that "2As,1 can be found. The dissi-




pation loss factors are measured by studies of the vibration
decay rate when the excitation is removed.

Experiment 6. To measure the AF mode and AS mode coupling
loss factor, a mechanical shaker is used to excite the
ribbed, baffled shroud in frequency bands. If the power
input from the shaker is stopped, the decay rate of shroud
energy will be equal to the power radiated and dissipated.

dE E E,
- —35 = © (Mopelpar + Topg, 1%2as) (?12‘ } ﬁ"‘)
2 ’ tot 1
Ea

n + N n ) - b}
2AF 2AF 2AS 2AS ntot

+ o (N

All parameters in this equation can be measured or have been
found in previous experiments, except (nQAFnéAF + nEASnzAS)'

If we assume that the loss factors are equal (this assumption
cannot be easily checked), then n2AF and n2AS are given by

the above equation.

These experiments complete the study of the parameters con-
trolling the acoustic acceptance and radiation properties of the
shroud. A similar set of experiments should be conducted on the
spacecraft panel model.

The important properties of the interior volume (Element 3),
for our study, are its acoustical absorption and its geometry.
The absorption is measured by making decay rate measurements of
the sound pressure in frequency bands, taking into account the
loss calculations for the sound that is transmitted outward
through the shroud into the surrounding space.

Experiment 7. To measure the interior acoustic space ab-
sorption, excite the interior space to its steady-state
sound-pressure level., Then, stop the excitation. The decay
rate will be equal to the power dissipated in the interior
and exterior acoustic spaces plus the power dissipated in
the shroud.




GE4 E,
3t = OMEy + o(Myphsppn + n2ASn2AS)< 5;01) + @NEs .

In this equation, only ﬂ3 is unknown. The remaining para-
meters have been evaluated in other experiments or can be
measured.
The geometry of the acoustic space will determine the "diffusion"
of the sound field within. Diffusion can be measured by conduct-
ing Experiment 1 for the interior acoustic space.

The second class of experiments is to be performed on various
portions of the acoustic transmission path. PFirst, the acoustic
acceptance of the shroud should be studied. This is done by mak-
ing the absorption of the interior space as low as possible and
exciting the shroud with an external sound field.

Experiment 8. Remove all acoustically absorptive material
from the interior acoustic space. Excite the shroud model
with a diffuse external sound field, and measure the space-
time mean square vibratory response of the shroud by sampling
the vibration levels at many locations. Then, increase the
damping and again measure the vibration levels. Repeat the
above procedure with a directive field.

Next, the noise reduction by the shroud should be studied.
From the discussion in Chapter 3, it is clear that we should find
the relative amount of sound transmitted through the shroud by
forced-wave (nonresonant) and resonant response. Forced-wave
transmission is independent of structural damping; therefore, a
way to find the relative importance of forced-wave transmission
is to increase the shroud damping. Any increase in noise reduc-
tion must be due to the decrease in resonant transmission.

Experiment 9. Add an absorptive liner to the interior
acoustic space and measure the resulting dissipation loss
factor n3. Then establish an external diffuse sound field




and measure the noise reduction. Repeat the experiment for
a directive sound field. Add a large amount of damping to
the shroud, and repeat the above two measurements. Change
the interior acoustic-space absorption and repeat all of the
above measurements.

Finally, the complete acoustic transmission path should be
studied. Energy transmitted by the mechanical path can be elimi-

nated by using an extremely soft mechanical suspension for the
spacecraft.

Experiment 10, With the spacecraft model and shroud liner
in place, excite the shroud with a diffuse sound field and
measure the shroud response, the NR, and the spacecraft
response., Repeat these measurements for a directive sound
field. Change various parameters and study the changes in
response,

This completes the study of the acoustic path. Next, we dis-
cuss a study of the mechanical path.

Al.3.2 Experimental Study of the Mechanical Path

In this section, we outline a number of experiments that
should be performed on the mechanical-transmission path elements.
These experiments have been divided into two classes. First,
experiments to determine the modal densities and loss factors of
the individual elements are described. Second, experiments on
various portions of the mechanical-transmission path are studied.

First the modal densities of the ring frame and mounting
trusses should be studied. Densities of both torsional and bend-
ing waves should be found by exciting the elements with a moment
and a force.

Experiment 11. With the shroud and mounting trusses dis-
connected, excite the ring frame wlth a sinusoidal force
of slowly varying frequency. Where possible, count the
number of resonances in the response. Connect the shroud




and trusses, but damp them heavily, and repeat the mode
count.

Experiment 12, Repeat Experiment 11 for the mounting trusses
applying a force in the two principle directions of flexure.

Experiment 13. Repeat Experiment 11 for the mounting trusses,
with a moment excitation.

The above experiments are complicated by the interaction of
torsional and bending modes and by the interaction of modes of one
structure with another.

The resonant vibration of the spacecraft shroud forms the
random environment of the ring frame. In the theoretical analysis,
we assumed that the coupling loss factor from the ring frame to
the shroud would be much larger than the ring-frame dissipation
loss factor or its coupling loss factor to the mounting truss.

This hypothesis can be tested by exciting the ring frame with bands
of noise and observing its decay rate.

Experiment 14. Excite the ring frame with a band of noise
and measure the resulting vibration levels in the shroud,
ring frame, and mounting trusses. The coupling loss factors
between these elements and the ring frame can be expressed
in terms of these levels and the dissipation loss factors

of the shroud and mounting trusses:

E E

5 2
5:2 5 n5 n2 2 2

and

E E

5 6
Nz N ( = - — |/ =71 E
5’6 5 n5 n6 6 6

Experiment 15, Excite the ring frame with a band of noise
and stop the excitation. The decay rate of the ring frame
energy is given by

A-14




dE E E E E
s <_5__2> <_5 ]
& " T5,e\n;m,/ e\ T R/t 5 Es

All parameters in this equation, except n5, are known

or can be measured.

The above experiments should be repeated for the mounting
trusses, to find the coupling loss factor between the trusses
and the ring frame and between the trusses and the spacecraft
panel. 1In addition, the flexural- and torsional-vibration levels
of the trusses should be measured when the ring frame is excited
by noise. This measurement can be correlated with the equal
modal-energy hypothesis made in Chapter 4.

Finally, we outline a set of experiments to study portions
of the mechanical path. To eliminate the flow of energy in the
acoustic path, fthe shroud can be removed and the ring frame ex-
clted directly by a mechanical shaker. The experimental results
can then be determined in terms of the ring-frame energy.

Experiment 16. With the spacecraft and mounting trusses
in place, excite the ring frame to a steady-state level.
Then measure the resulting energy levels in the trusses
and the spacecraft panels.

Since energy is transmitted by both resonant and nonresonant
motion of the mounting trusses, Experiment 16 should be repeated
with the trusses heavily damped. It would also be interesting to
alter the structural configuration and find the effect on the
response levels,

These brief discussions indicate the number and type of exper-
iments that can be undertaken on the OGO model. The experiments
take full advantage of the model's flexibility and its usefulness
in allowing fairly complete calculations on the system. We strongly



recommend that as many as possible of these measurements be carried
out in order to develop the most complete picture for the system.

A-16
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FIG.17 SPACECRAFT MODEL CONNECTED TO RING
FRAME BY THE MOUNTING TRUSSES
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FIG.19 SINGLE CHANNEL BEAM MODEL OF MOUNTING
TRUSS, ELEMENT (6)
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F1G.21 GEOMETRY OF RING FRAME-MOUNTING
TRUSS CONNECTION

{15

: . 26=R6-iX6§

<

FIG.22 EQUIVALENT CIRCUIT FOR DETERMINING RESONANT
POWER FLOW FROM RING FRAME TO MOUNTING TRUSS
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FIG.23 MOMENT AND ANGULAR VELOCITY DEFINITIONS

FOR ANALYSIS OF NONRESONANT MOUNTING
TRUSS MOTION

ak Qs

O i

FIG.24 EQUIVALENT CIRCUIT FOR DETERMINING POWER
TRANSMITTED NONRESONANT MOUNTING TRUSS
MOTION
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TABLE I. Parameter values for a model of the OGO spacecraft

assembly.

A, =276 1t° = 2.56 x 10° cm®
£2 = 195 in. = 495 cm
by = 24 1in, = 61 cm base of shroud to first rib
Loy = 30 in. = 76 ecm first to second rib
Loy = 34 in, = 86.5 c¢m second to third rib
brg = 42 in. = 107 em third to fourth rib
a, = 32.5 in, = 82.5 cm

= 0,13 in. = 0.33 cm
Ko = 0,0366 in. = 0.093 cm
fr = 650 Hz
fc = 5200 Hz
M, =1.41x10°¢
p = 0.00113

02(2) = 11 000 ft/sec 3.35 x 105 cm/sec

0, =8
ps(g) = 1.225 1bs/ft° = 0.55 g/cm”
Po = 1,2 X 10_3 cm/sec
l
Cq = 1100 ft/sec = 3.4 x 10" cm/sec
PoCo = 41 dyn-sec/cm3
v, =37 £t3 - 1.07 x 107 emd
ol ~ 0.1 (values of 0.1 and 0.3 are used in the calculations)
3 4
Ay = 56.5 ££° = 5.25 x 10 em® (all four panels

included)



TABLE I. (con't)

Ky, = 0,271 in. = 0.688 cm

cz(u) = 17 000 ft/sec = 5,17 x 10° cm/sec

L = 69 in, = 175 cm (length of the panel in
y vertical direction)
L = 29,5 in. = 75 cm (length of one panel in
X vertical direction)
ps(“) = 0.765 1b/ft° = 0.373 g/cm®

M4 = 1,96 x 104

fc = 500 Hz

a5 =5 cm

t5 = 0.64 cm

2w5 = 5 cm

£5 = 204 in. = 518 cm

02(5) = 17 000 ft/sec = 5.17 x 10° cm/sec

92(5) = 25,9 g/cm

M5 = 1.34 x 1OLL g

ag = 8.9 cm

t6 = 0,152 cm

2ug = 7.6 cm

A¢ = 200 cm (length of all four

trusses)

02(6) =5 X 10° cm/sec

92(6) | = 10.4 g/cm

Mg = 2,08 x 103g(mass of all four

trusses)




